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This paper investigates a novel approximate Bayesian inference procedure for numerically
solving inverse problems. A hierarchical formulation which determines automatically the
regularization parameter and the noise level together with the inverse solution is adopted.
The framework is of variational type, and it can deliver the inverse solution and regulari-
zation parameter together with their uncertainties calibrated. It approximates the posteri-
ori probability distribution by separable distributions based on Kullback–Leibler
divergence. Two approximations are derived within the framework, and some theoretical
properties, e.g. variance estimate and consistency, are also provided. Algorithms for their
efficient numerical realization are described, and their convergence properties are also dis-
cussed. Extensions to nonquadratic regularization/nonlinear forward models are also
briefly studied. Numerical results for linear and nonlinear Cauchy-type problems arising
in heat conduction with both smooth and nonsmooth solutions are presented for the pro-
posed method, and compared with that by Markov chain Monte Carlo. The results illustrate
that the variational method can faithfully capture the posteriori distribution in a computa-
tionally efficient way.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we are interested in a novel numerical method of Bayesian type for solving inverse problems, especially
those related to heat conduction. Inverse problems arise in many disciplines, such as heat conduction [1], mechanics and
geophysics, and play an important role in revealing the underlying physical mechanisms. Typically, inverse problems are
ill-posed in the sense that the solution lacks a stable dependence on the data. Therefore, their stable and accurate numerical
solutions are very challenging. One of the most popular approaches is Tikhonov regularization, which solves a nearby well-
posed problem and takes its solution as an approximation. Iterative type methods, such as Landweber method and conjugate
gradient method, equipped with a suitable stopping criterion can also be applied.

Bayesian inference approach provides another principled and flexible framework for inverse problems, and has distinct
features over classical deterministic regularization methods. Firstly, it yields an ensemble of inverse solutions consistent
with the given data, and thus it enables uncertainty quantification of a specific solution. This contrasts sharply with
above-mentioned deterministic inverse techniques that content with singling out one solution out of the ensemble. Sec-
ondly, it provides a flexible regularization in that the difficult problem of choosing a regularization parameter is resolved
through hierarchical modeling. Therefore, it has attracted considerable attention in a wide variety of applied disciplines,
. All rights reserved.
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e.g. geophysics [2,3], image processing [4] and transient heat conduction [5–7]. For a comprehensive overview of method-
ological developments, we refer to monographs [2,4].

Hierarchical Bayesian inference has been applied to inverse heat conduction problems [5–8]. The numerical results pre-
sented in these studies are very encouraging in that the regularization parameter, noise level and inverse solution can be
simultaneously estimated with their uncertainties calibrated. Despite the popularity of hierarchical Bayesian formulations
in practical applications and demonstrated performances, the choice of the prior parameter pairs for the hyper-parameters
was carried out in a rather ad hoc manner in existing studies. It remains unclear why these formulations work in practice,
and no guidelines for their choice were available. Also the Bayesian solution, i.e., posterior probability density function
(PPDF) is often numerically sampled, e.g. by Markov chain Monte Carlo (MCMC). However, the MCMC can be computation-
ally expensive, and its convergence might be not easy to diagnose. To circumvent the computational problem, the authors [8]
proposed considering the joint maximum a posteriori (MAP), and derived an augmented Tikhonov (a-Tikhonov for short)
functional that determines the regularization parameter and the noise level along with the solution. Recently some mathe-
matical underpinnings were also provided [9]. However, it yields only one solution like above-mentioned deterministic in-
verse techniques and does not calibrate the associated uncertainties, and thus it is not completely satisfactory from the point
of view of Bayesian analysis.

This paper investigates an alternative framework based on the variational method. The new approach can quantify the
uncertainties of the computed solution, thereby overcoming the drawback of the a-Tikhonov method. The approach was first
developed in machine learning community [10–12], however, its application to inverse problems seems largely unexplored.
This paper will offer some new theoretical results, e.g. its properties in the context of classical inverse theory and conver-
gence properties of the algorithms, to shed some lights on the practical performance. Analyzing the properties of these
approximations also provide one means to interrogate the properties of hierarchical formulations. Some heuristic guidelines
for the choice of prior parameter pairs in hierarchical Bayesian formulations will be derived, and thus the study sheds new
insights on hierarchical Bayesian formulations. The approach is generally applicable to both linear and nonlinear inverse
problems with suitable extensions. We shall examine its applicability on severely ill-posed linear and nonlinear Cauchy
problems, and carry out a detailed comparison of the new method with the true PPDF explored by the MCMC.

The rest of the paper is structured as follows. Fundamentals of Bayesian inference, hierarchical modeling and associated
computational challenge are recalled in Section 2. The variational method for linear inverse problems is described in Section
3, two approximations of the PPDF are derived, and their theoretical properties are analyzed. Algorithms for computing the
approximations together with their convergence properties are also discussed. Two generalizations, i.e., ‘r prior and nonlin-
ear forward models, are briefly discussed in Section 4. Numerical results for the Cauchy-type problems with smooth and
nonsmooth solutions to illustrate their features are presented in Section 5, and compared with that by the MCMC. Finally,
we conclude the paper with Section 6.
2. Bayesian inference approach

This section describes the Bayesian framework for a finite-dimensional linear inverse problem
Hm ¼ d; ð1Þ
where H 2 Rn�m;m 2 Rm and d 2 Rn represent system matrix, sought-for solution and given data, respectively. We shall de-
note d� the noise-free data, and assume that d = d� + x with x being a random vector with mean zero and variance r2

0I. We
shall focus on hyper-parameter treatment within hierarchical models and the associated computational challenge of explor-
ing the posterior state space.

The primary goal of Bayesian inference is to deduce the distribution of the unknown parameters m conditioned on the
data d, i.e., the PPDF p(mjd). According to Bayes’ rule, it is related to d by
pðmjdÞ ¼ pðdjmÞpðmÞR
pðdjmÞpðmÞdm

:

The functions p(djm) and p(m) are known as likelihood function and prior probability density, respectively, and they are two
basic building blocks of Bayesian inference. Intuitively, it provides a mechanism to integrate the prior knowledge p(m) with
the information contained in the data p(djm) to achieve the current state of knowledge, the PPDF p(mjd). The normalizing
constant

R
pðd jmÞpðmÞdm is needed for estimating the credible interval [13], however its computation can be highly non-

trivial, especially in high-dimensions. Fortunately, it is often unnecessary to compute the normalizing constant, e.g. the
MCMC and optimization, and the PPDF p(mjd) may be simply evaluated as
pðmjdÞ / pðdjmÞpðmÞ: ð2Þ
The PPDF p(mjd) constitutes a complete description of the inverse problem, and it contains all the information available
about m. However, it is not directly informative, and various summarizing statistics, e.g. point estimates and credible inter-
vals, have to be computed. Typical point estimates include posterior mean m̂pm and MAP m̂map. However, we caution that
point estimates may not be representative of the PPDF [5,6].



B. Jin, J. Zou / Journal of Computational Physics 229 (2010) 7317–7343 7319
Regarding the two building blocks of a generic Bayesian model, the likelihood is usually straightforward to obtain. A sim-
ple model assumes that i.i.d. additive Gaussian random errors with mean zero and variance r2 = s�1 account for the mea-
surement noise. Then the likelihood p(djm) is given by
pðdjmÞ / sn
2e�

s
2kHm�dk2

2 : ð3Þ

Throughout this paper, we shall reserve the notation r2 for noise variance, and denote the variance of any other quantities by
var ().

The prior p(m) encodes the knowledge of the unknown m before collecting the data, and thus it stays at the heart of any
modeling tasks. A versatile tool for prior modeling is Markov random field (MRF). In the present study, the following simple
MRF is adopted
pðmÞ / k
m
2 e�

k
2kLmk2

2 ; ð4Þ
where the matrix L encapsulates the structure of the interactions between neighboring sites, and k is a scaling parameter
dictating the strength of interaction. We shall assume ker H \ ker L = {0} and the rank of L is m for simplicity.

If the parameters s and k are known, with likelihood (3) and prior model (4), the PPDF p(mjd) (2) can be evaluated as
pðmjdÞ / e�
s
2kHm�dk2

2 e�
k
2kLmk2

2 : ð5Þ
In Bayesian analysis, it is customary to select the MAP m̂map :¼ arg maxmpðm j dÞ as the inverse solution. The MAP m̂map is
easily derived as
m̂map ¼ arg min
m

J gðmÞ :¼ kHm� dk2
2 þ gkLmk2

2

n o
;

which is exactly Tikhonov regularization with a regularization parameter g = ks�1, and the unique minimizer will be denoted
by mg. Therefore, the prior p(m) regularizes the inverse problem and ks�1 assumes the crucial role of a regularization param-
eter. However, the selection of g is notoriously nontrivial in almost all inverse techniques. The parameters k and s are still
important in Bayesian inference due to their substantial effects on the PPDF and thus posterior point estimates.

The Bayesian paradigm proposes to resolve the issue flexibly through hierarchical modeling. The idea is to let the data d
determine these parameters in the hope of effectively diminishing the effect of the initial (prior) assumptions of their values
on the inverse solution. More precisely, the hyper-parameters, i.e., k and s, are also modeled as random variables and have
their own priors. Then the PPDF (2) is augmented to determine the scaling parameter k and to detect the noise level s as
follows:
pðm; k; sjdÞ / pðdjm; sÞpðmjkÞpðkÞpðsÞ: ð6Þ
A standard practice to select priors for hyper-parameters, also known as hyper-priors, is to use conjugate priors, which
enables combining neatly with the likelihood to facilitate subsequent mathematical manipulations of the PPDF while re-
mains sufficiently flexible. For both k and s, the conjugate prior is a Gamma distribution G(t;a,b), which is defined by
Gðt; a;bÞ ¼ ba

CðaÞ t
a�1e�bt; ð7Þ
where C(�) is the standard Gamma function, and a and b are nonnegative constants. The mean, standard deviation and mode
of G(t;a,b) are given by a

b,
ffiffi
a
p

b and a�1
b , respectively. In some real-world applications, nonconjugate priors can also be very use-

ful and may affect the subsequent derivations, however, we will restrict our attention to conjugate priors. Upon adopting
conjugate priors for both k and s, the PPDF (6) reads
pðm; k; sjdÞ / sn
2e�

s
2kHm�dk2

2 � km
2 e�

k
2kLmk2

2 � ka0�1e�b0k � sa1�1e�b1s; ð8Þ
where (a0,b0) and (a1,b1) are the parameter pairs of the Gamma distribution for k and s, respectively.
Due to the presence of the hyper-parameters k and s, the PPDF (8) is nonstandard and implicit as opposed to the PPDF (5).

The posterior state space is often of high dimensionality, and thus it can only be numerically explored. Among various
numerical sampling techniques, the MCMC remains the most popular one [14,15]. Unfortunately, a large number of samples,
e.g. 105 � 106, are often required for obtaining reliable estimates, especially for the variance of the inverse solution, and thus
a faithful exploration of the PPDF is expensive, and moreover the convergence of the Markov chain maybe not easy to
diagnose.

To the best of authors’ knowledge, few attempts besides numerical exploration via the MCMC have been made to simul-
taneously estimate of the hyper-parameters and the solution together with their uncertainties, and often only point esti-
mates have been considered. One typical approach of the latter category is the a-Tikhonov method [9]. It considers the
MAP of the PPDF (8), which amounts to minimizing the functional J ðm; k; sÞ defined by
J ðm; k; sÞ ¼ s
2
kHm� dk2

2 þ
k
2
kLmk2

2 þ b0k� a00 ln kþ b1s� a01 ln s; ð9Þ
where a00 ¼ m
2 þ a0 � 1 and a01 ¼ n

2þ a1 � 1. One salient feature of the functional is that it determines regularization param-
eter and noise level simultaneously with the inverse solution. However, it aims at a single solution and not at the PPDF that
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can be explored to gain additional information about the point estimate. Instead of retaining all possible values of the param-
eters and the solution, it chooses one specific set of values, thereby neglecting many other interpretations of the data. Intu-
itively, this can be problematic: for sharply peaked PPDFs, other values will have much lower posterior probabilities, but for
broad PPDFs, choosing one single value will neglect many other equally plausible interpretations.

3. Variational principle

In this section, we describe the variational method for computing an approximation to the PPDF (8). It can deliver point
estimates together with uncertainties for both the solution and hyper-parameters, and thus overcomes some drawbacks of
point estimate-oriented methods, e.g. the a-Tikhonov method. The derivations will also shed new lights on hierarchical
Bayesian formulations.

The basic idea is to approximate the PPDF p(m,k,sjd) by a ‘‘simpler” distribution using Kullback–Leibler divergence while
hopefully retaining its main features. It has attracted considerable interests during the last few years, and the spectrum of its
applications includes graphical models [11], MEG inverse problem [16] and image processing [17]. For an account of its
application to signal processing, we refer to the monograph [18], and references therein for further literature. This section
focuses on two approximations given by the framework.

Methodologically speaking, the fundamental idea of the variational method consists of first transforming the problem
into an equivalent optimization problem and obtaining then an approximation by solving the optimization problem inex-
actly, in a manner analogous to the classical finite-element method. To this end, we need to choose the distance metric
to derive an equivalent optimization problem and the type of assumptions to deliver computationally tractable approxima-
tions. Hence there are two essential ingredients of the variational method: metric and simplifying assumption. The Bayesian
solution is a probability distribution (density function), and thus the equivalent transformation calls for probability metric.
In principle, any valid probability metric, e.g. Kullback–Leibler divergence, Hellinger distance and Wasserstein distance, see
Ref. [19] for an overview of some most commonly used probability metrics, can be adopted to measure the distance between
an approximate PPDF and the true PPDF. While most of these distances do not directly lead to computationally tractable/effi-
cient numerical algorithms, the Kullback–Leibler divergence does, as we shall see in the remaining part of this section. We
review briefly the Kullback–Leibler divergence below, and for a detailed account of its mathematical properties, we refer to
Ref. [20]. The Kullback–Leibler divergence DKL(q(m,k,s)jp(m,k,sjd)) between two probability density functions q(m,k,s) and
p(m,k,sjd) is defined by
DKLðqðm; k; sÞjpðm; k; sjdÞÞ ¼
Z Z Z

qðm; k; sÞ ln qðm; k; sÞ
pðm; k; sjdÞ dmdkds

¼
Z Z Z

qðm; k; sÞ ln qðm; k; sÞ
pðm; k; s;dÞdmdkdsþ log pðdÞ;
where pðdÞ ¼
R R R

pðm; k; s;dÞdmdkds is a normalizing constant. Recall Jensen’s inequality
E½uðYÞ�P uðE½Y �Þ; ð10Þ
where the notation E denotes taking expectation with respect to a certain probability measure, Y is a random variable and u
is a convex function. Since q(m,k,s) is a probability density function, we can apply inequality (10) with u(x) = � ln (x) and
Y ¼ pðm;k;sjdÞ

qðm;k;sÞ to deduce
DKLðqðm; k; sÞjpðm; k; sjdÞÞ ¼ E½uðYÞ�P uðE½Y�Þ

¼ � ln
Z Z Z

qðm; k; sÞ � pðm; k; sjdÞ
qðm; k; sÞ dmdkds

¼ � ln
Z Z Z

pðm; k; sjdÞdmdkds ¼ � ln 1 ¼ 0:
That is, the divergence DKL is nonnegative and vanishes if and only if q coincides with p, and measures the ‘proximity’ be-
tween two distributions. Therefore we have effectively transformed the problem into an equivalent optimization problem
by considering minimizing the divergence DKL. If there is no restriction on the trial distribution q(m,k,s), minimizing the
divergence DKL would reproduce the PPDF p(m,k,sjd). However, the PPDF p(m,k,sjd) is not available in closed form for
p(d) cannot be calculated analytically. Nonetheless, it is a fixed constant for a given set of data d, and thus irrelevant in
the optimization procedure. We will suppress the conditional notation in our subsequent expressions, and choose to mini-
mize the following functional, which is also denoted by DKL
DKLðqðm; k; sÞjpðm; k; sÞÞ ¼
Z Z Z

qðm; k; sÞ ln qðm; k; sÞ
pðm; k; sÞdmdkds: ð11Þ
Unfortunately, this optimization problem without further assumptions is also computationally intractable to solve ex-
actly. Nonetheless, an approximation can be obtained by solving the optimization problem inexactly under certain simpli-
fying assumptions. This can be achieved by restricting the space of admissible solutions, in the same spirit of using a finite-
dimensional finite element space instead of a computationally intractable infinite-dimensional function space in the finite
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element method. This is the other essential ingredient of the variational method. To this end, let us examine more closely the
origin of difficulty. The difficulty mainly stems from the strong interactions/coupling between m and (k,s), i.e., conditional
dependence in probability terms. Therefore, conditional independence emerges as the key ingredient in developing approx-
imations in the probability world. Consequently, the variational method adopts a separable, i.e., conditionally independent
given the data d, approximation for the posterior distributions of m and (k,s). The idea is closely related to the mean field
theory of statistical mechanics for treating many-body systems. Therefore, we seek an approximation q(m,k,s) of factorized
form
qðm; k; sÞ ¼ qðmÞqðk; sÞ: ð12Þ
This is often the only assumption invoked on the ‘‘simpler” approximation q(m,k,s) to render the optimization problem (11)
analytically and computationally tractable, and the resultant is termed as Nondegenerate Approximation (Approx I for
short). Extra assumptions, e.g. degeneracy, on the approximations may be imposed to further reduce its complexity. We will
investigate the case of a degenerate q(m), and term it as Degenerate Approximation (Approx II for short).

3.1. Nondegenerate approximation

Approx I approximates the PPDF with a factorized distribution q(m,k,s) = q(m)q(k,s). We have the following existence
result, which shows that the optimization problem is well-defined.

Theorem 3.1. There exists at least one minimizer to the optimization problem (11).
Proof. By Jensen’s inequality, the functional DKL is bounded from below, and thus there exists a minimizing sequence
qn(m,k,s) � qn(m)qn(k,s). Note that the divergence DKL is weakly lower semi-continuous on L1 and that for any C > 0, the sub-
level sets {qn(m,k,s) 2 L1 : DKL(qn(m,k,s)jp(m,k,s)) 6 C} are weakly compact in L1, see Lemmas 2.2 and 2.3 of Ref. [21].
Therefore, there exists at least one minimizer q* (m,k,s) � q*(m)q*(k,s) to the optimization problem (11). h

The rest of this section analyzes the properties of the minimizers by examining the optimality system and describes an
algorithm for computing the minimizer.

3.1.1. Derivation of optimality conditions
We shall attempt to analyze the properties of the minimizers to gain understanding of the variational method and hier-

archical formulations. To this end, we consider its optimality system. To enforce the normalization condition of the densities
q(m) and q(k,s), i.e.,

R
qðmÞdm ¼ 1 and

R R
qðk; sÞdkds ¼ 1, we introduce the Lagrange function LðqðmÞ; qðk; sÞ;.1;.2Þ of the

divergence DKL defined as follows:
LðqðmÞ; qðk; sÞ;.1;.2Þ ¼ DKLðqðmÞqðk; sÞjpðm; k; sÞÞ þ .1

Z
qðmÞdm� 1

� �
þ .2

Z Z
qðk; sÞdkds� 1

� �
;

where .i are Lagrange multipliers associated with the normalizing conditions. Taking the variational derivative of the La-
grange function LðqðmÞ; qðk; sÞ;.1;.2Þ with respect to q(m) and equating it to zero yields
@

@qðmÞ LðqðmÞ; qðk; sÞ;.1;.2Þ ¼
@

@qðmÞDKLðqðmÞqðk; sÞjpðm; k; sÞÞ þ .1

¼
Z Z

@

@qðmÞ

Z
qðmÞ ln qðmÞqðk; sÞ

pðm; k; sÞ dm
� �

qðk; sÞdkdsþ .1

¼
Z Z

� ln pðm; k; sÞ þ ln qðk; sÞ � 1þ ln qðmÞ½ �qðk; sÞdkdsþ .1 ¼ 0;
where .1 is determined according to the optimality condition @
@.1
LðqðmÞ; qðk; sÞ;.1;.2Þ ¼ 0, i.e., the normalization conditionR

qðmÞdm ¼ 1. Rearranging the above equation shows that at a critical point q*(m)q*(k,s) of the divergence DKL, there holds
ln q�ðmÞ ¼
Z Z

ln pðm; k; sÞq�ðk; sÞdkds� ln Zq�ðmÞ ¼ Eq�ðk;sÞ½ln pðm; k; sÞ� � ln Zq�ðmÞ;
where the constant ln Zq�ðmÞ ¼ .1 � 1þ
R R

q�ðk; sÞ ln q�ðk; sÞdkds. Here the notation Eq denotes taking expectation with re-
spect to a probability density function q. By substituting the formula for p(m,k,s), c.f. (8), into this equation, we obtain
ln q�ðmÞ ¼ Eq�ðk;sÞ½ln pðm; k; sÞ� � ln Zq�ðmÞ

¼ Eq�ðk;sÞ �
s
2
kHm� dk2

2 �
k
2
kLmk2

2 þ Tðk; sÞ
� �

� ln Zq�ðmÞ;

¼ � Eq�ðk;sÞ½s�
2

kHm� dk2
2 �

Eq�ðk;sÞ½k�
2

kLmk2
2 þ Eq�ðk;sÞ½Tðk; sÞ� � ln Zq�ðmÞ;
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where T(k,s) contains terms in lnp(m,k,s) not involving m. Since the last two terms are independent of m and thus contrib-
ute only to the normalizing condition and the first two terms are quadratic in m, we deduce that q*(m) follows a Gaussian
distribution. To simplify the expression, let the scalars k*, s* and g* be defined as k� ¼ Eq�ðk;sÞ½k� and s� ¼ Eq�ðk;sÞ½s�, and g� ¼ k�

s�,
respectively. Now observe the elementary identity which follows by expanding the quadratic function at
m* = (HTH + g*LTL)�1HTd
�s�

2
kHm� dk2

2 �
k�

2
kLmk2

2 ¼ �
1
2

m�m�ð ÞT s�HTHþ k�LTL
h i

m�m�ð Þ � s�

2
kHm� � dk2

2 �
k�

2
kLm�k2

2:
Observe that m� ¼mg� , the minimizer of the Tikhonov functional J g� , and also the last two terms contribute only to the nor-
malizing constant. Therefore, we deduce
q�ðmÞ ¼ N ðm�; ðs�HTHþ k�LTLÞ�1Þ;
where N denotes a normal distribution.
Next we derive the remaining part of the optimality system. Analogously, taking the variational derivative of the Lagrange

function LðqðmÞ; qðk; sÞ;.1;.2Þ with respect to q(k,s) and equating it to zero yields
@

@qðk; sÞ LðqðmÞ; qðk; sÞ;.1;.2Þ ¼
@

@qðk; sÞDKLðqðmÞqðk; sÞjpðm; k; sÞÞ þ .2

¼
Z

@

@qðk; sÞ

Z Z
qðk; sÞ ln qðmÞqðk; sÞ

pðm; k; sÞ dkds
� �

qðmÞdmþ .2

¼
Z
� ln pðm; k; sÞ þ ln qðmÞ � 1þ ln qðk; sÞ½ �qðmÞdmþ .2 ¼ 0;
where the Lagrange multiplier .2 is again determined according to the optimality condition @
@.2
LðqðmÞ; qðk; sÞ;.1;.2Þ ¼ 0, i.e.,

the normalization condition
R R

qðk; sÞdkds ¼ 1. Consequently, we deduce that
ln q�ðk; sÞ ¼
Z

ln pðm; k; sÞq�ðmÞdm� ln Zq�ðk;sÞ ¼ Eq�ðmÞ½ln pðm; k; sÞ� � ln Zq�ðk;sÞ;
where the constant Zq�ðk;sÞ ¼ .2 � 1þ
R

q�ðmÞ ln q�ðmÞdm. Let the constants a000 and a001 be defined by a000 ¼ m
2 þ a0 and

a001 ¼ n
2þ a1. Now the expression of p(m,k,s) gives
ln q�ðk; sÞ ¼ Eq�ðmÞ½ln pðm; k; sÞ� � ln Zq�ðk;sÞ

¼ Eq�ðmÞ a001 � 1
� �

ln s� 1
2
kHm� dk2

2 þ b1

� �
s

�

þ a000 � 1
� �

ln k� 1
2
kLmk2

2 þ b0

� �
kþ TðmÞ

�
� ln Zq�ðk;sÞ

¼ a001 � 1
� �

lns� 1
2

Eq�ðmÞ kHm� dk2
2

h i
þ b1

� �
sþ a000 � 1

� �
ln k� 1

2
Eq�ðmÞ kLmk2

2

h i
þ b0

� �
k

þ Eq�ðmÞ½TðmÞ� � ln Zq�ðk;sÞ;
where T(m) contains terms in lnp(m,k,s) not involving (k,s). Taking into account the normalization condition for q*(k,s) and
comparing the expression with the defining equation (7) of a Gamma distribution, we conclude that the density q*(k,s) is
separable, and can be written as q*(k,s) = q*(k)q*(s) with both q*(k) and q*(s) following a Gamma distribution, i.e.,
q�ðkÞ ¼ G k; a000;
1
2

Eq�ðmÞ kLmk2
2

h i
þ b0

� �
;

q�ðsÞ ¼ G s;a001;
1
2

Eq�ðmÞ kHm� dk2
2

h i
þ b1

� �
:

In particular, we have k� ¼ Eq�ðk;sÞ½k� ¼ Eq�ðkÞ½k� and s� ¼ Eq�ðk;sÞ½s� ¼ Eq�ðsÞ½s�. Note that the separability of the density func-
tion q*(k,s) = q*(k)q*(s) follows from the derivation, and is not a priori assumed.

In summary, we deduce that at a critical point q*(m,k,s) = q*(m)q*(k)q*(s) there hold
q�ðmÞ ¼ N m�; s�HTHþ k�LTL
	 
�1

� �
;

q�ðkÞ ¼ G k; a000;
1
2

Eq�ðmÞ kLmk2
2

h i
þ b0

� �
;

q�ðsÞ ¼ G s;a001;
1
2

Eq�ðmÞ kHm� dk2
2

h i
þ b1

� �
:

ð13Þ
Therefore, the approximate Bayesian solution q(m) follows a Gaussian distribution with mean m* and covariance
covq�ðmÞ ¼ ðs�HTHþ k�LTLÞ�1, and the parameters k and s still follow Gamma distributions with their prior parameter pairs,
i.e., (a0,b0) and (a1,b1), appropriately updated. The latter convenience is brought by the adoption of conjugate priors.
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The optimality system (13) will play an important role in analyzing of the minimizers and in designing algorithms for
minimizing the functional.

3.1.2. Properties of minimizer
To gain some understanding of and insight into hierarchical formulations, we focus on the means of the approximate

PPDF q*(m)q*(k)q*(s), i.e., k� ¼ Eq�ðkÞ½k�, s� ¼ Eq�ðsÞ½s� and m� ¼ Eq�ðmÞ½m�. The point estimates s* and k* accept nice interpreta-
tions. Note that
ðs�Þ�1 ¼
1
2 Eq�ðmÞ kHm� dk2

2

h i
þ b1

n
2þ a1

¼ 1s
b1

a1
þ ð1� 1sÞ

Eq�ðmÞ kHm� dk2
2

h i
n

;

where the weight 1s ¼ a1
a1þn

2
2 ð0;1Þ. Note that the quantity a1

b1
is the mean of the prior distribution for s and constitutes the

prior estimate of the inverse variance, and the term 1
n Eq�ðmÞ kHm� dk2

2

h i
stands for the contribution from the data d. There-

fore, the reciprocal of the mean s* is a convex combinations of the initial value determined by the prior parameter pair
(a1,b1) and the estimate determined by the data d, and the weight 1s plays the role of a normalized confidence parameter.
The weight 1s in turn is dictated by the prior parameter a1: 1s � 1 for large a1, and corresponds to the case of informative
prior, whereas 1s � 0 for a1 � 1. In the latter case, the estimate s* is fully determined by the data. An analogous interpreta-
tion applies to the estimate k*.

By computing the expectation explicitly, we derive that
s� ¼ a001
1
2 kHmg� � dk2

2 þ 1
2 trððHTHþ g�LTLÞ�1HTHÞ 1

s� þ b1

;

which after rearranging the terms and taking into account the defining equation ðr2Þ� ¼ 1
s� gives an estimate for the noise

variance
ðr2Þ� ¼
1
2 kHmg� � dk2

2 þ b1

a001 � 1
2 trððHTHþ g�LTLÞ�1HTHÞ

:

Up to now, we have not mentioned how to the specify the prior parameter pairs (a0,b0) and (a1,b1). In practice, these
parameter pairs are chosen in an ad hoc manner [5,6,8], and there exists no known guideline for their appropriate choices
despite the popularity of hierarchical Bayesian formulations. As a consequence, we do not know how good the estimate
(r2)* can be and how to choose (a1,b1) so that the estimate is reasonable. To explore these issues, we have to analyze the
properties of the minimizer. First, we recall that one of the most popular statistical approaches for estimating noise variance,

the generalized cross-validation (GCV) [22], seeks an estimate VðgÞ ¼ kHmg�dk2
2

T ðgÞ , where g minimizes the GCV function

VðgÞ=T ðgÞ with T ðgÞ defined as T ðgÞ ¼ tr In �HðHTHþ gLTLÞ�1HT
	 


. In the PPDF (8), if a noninformative prior is adopted

for s, which is mimicked by a1 � 1 and b1 � 0, then the estimate (r2)* almost coincides with the GCV estimate VðgÞ
ðr2Þ� � Vðg�Þ � �

by observing the identity T ðgÞ ¼ n� tr HTHþ gLTL

	 
�1
HTH . The GCV estimate VðgÞ can often approximate accurately the

variance r2
0 for g varying over a broad scale. This was observed in many numerical experiments [22], and we refer to Ref. [9]

for a preliminary justification. Under the premise that the GCV estimate VðgÞ is reasonable, the equality should hold reason-
ably. To this end, b1 should be small relative to kHmg � dk2

2, and a1 might take value 1.
According to classical inverse theory [23], there exists no deterministic inverse theory for parameter choice rules disre-

specting the true noise level r0, to which the hierarchical formulation (8) belongs. In particular, the inverse solution does not
necessarily converge as the true noise level r0 diminishes to zero. Numerically, we always observe that (r2)* approximates
excellently r2

0. Therefore, we choose to fix the estimate (r2)* at r2
0 for gaining further insights. To this end, we recall the def-

inition of a generalized minimum-norm solution m� in classical inverse theory to the linear inverse problem (1), i.e., it
satisfies
Hmy ¼ dy and kLmyk2 6 kLmk2 8m 2 Rm such that Hm ¼ dy:
Under the assumption that kerH \ kerL = {0}, the generalized minimum-norm solution is unique. The condition Hm� = d� re-
quires consistency between the model H and the exact data d�, and it holds for sufficiently accurate forward models. More-
over, we have the next result on the mean m� ¼mg� , and for a proof, we refer to Appendix A.1. The result is of deterministic
worst-case scenario type as in the classical inverse theory [23]. That is, we have abused the notation x of a random variable
for its realization. Note that for a Gaussian random variable x, the event that the norm of its realization kxk2 is of order r0

occurs with a overwhelming probability.

Theorem 3.2. Assume that s is fixed at r�2
0 , the realization of the random variable x satisfies kxk2

2 6 cr2
0 for any r0 and ker

H \ ker L = {0}. Then for fixed b0 and a000 	 O r�d
0

� �
with 0 < d < 2, the mean m* converges to the generalized minimum-norm

solution m� as r0 tends to zero.
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Theorem 3.2 indicates that under some conditions on a000 the mean m* converges to the desired exact solution as the noise
level tends to zero. Conversely, it also implies that hierarchical formulations with fixed a0 might fail, if the noise level r0

varies arbitrarily, albeit the dependence might be rather weak. This observation can be numerically confirmed, see Section
5. The choice a000 	 r�d

0 with 0 < d < 2 is in accordance with the classical inverse theory [23]. The theorem imposes no condi-
tion on b0, but from the proof in Appendix A.1, the choice b0 	 O Lmy�� ��2

2

	 

� Oð1Þ seems plausible. Numerically, it has only a

negligible effect so long as its value is sufficiently small. In brevity, we may choose the parameter pairs (a0,b0) and (a1,b1)
according to the following heuristic guidelines: a0 	 Oðr�1

0 Þ, b0 	 Oð1Þ, a1 	 Oð1Þ and b1 
 r2
0. As the exact noise level r0

may be unknown, the guideline a0 	 Oðr�1
0 Þ suggests adaptively updating the parameter a0 using the estimated noise level

(r2)* in practical implementation. A similar strategy has been derived for the a-Tikhonov method [24]. We will neither fur-
ther pursue this strategy in the present paper, and nor implement it in the numerical experiments.

3.1.3. Algorithm I
We are now in a position to describe an algorithm of alternating iterative type for computing Approx I. The Kullback–

Leibler divergence is known to be strictly convex [21]. However, the separability assumption renders the optimization non-
convex as the domain of definition is no longer convex. Nonetheless, it remains strictly biconvex, i.e., strictly convex with
respect to q(m) (respectively q(k,s)) for fixed q(k,s) (respectively q(m)). The algorithm derives directly from this analytical
observation, and is sketched in Algorithm 1 (Alg I for short).

Algorithm 1. Variational approximation with q(m,k,s) = q(m)q(k,s)

1: Give an initial guess q0(k,s) and tolerance tol, set k = 0 and compute g1 ¼ Eq0ðk;sÞ½k�=Eq0ðk;sÞ½s�
2: repeat
3: Set k = k + 1.
4: Find qk(m) by
qkðmÞ ¼ arg min
qðmÞ

DKLðqðmÞqk�1ðk; sÞjpðm; k; sÞÞ:
5: Find qk(k,s) by
qkðk; sÞ ¼ arg min
qðk;sÞ

DKLðqkðmÞqðk; sÞjpðm; k; sÞÞ:
6: Calculate kkþ1 ¼ Eqkðk;sÞ½k� and skþ1 ¼ Eqkðk;sÞ½s�, and set gkþ1 ¼ kkþ1s�1
kþ1.

7: until jgk+1 � gkj/gk 6 tol
8: Return qk(m)qk(k,s) as the solution

Before commenting on its convergence, let us first further develop each step of the algorithm. Setting the first variation of

the divergence DKL with respect to q(m) to zero gives
qkðmÞ / exp Eqkðk;sÞ½ln pðm; k; sÞ�
	 


;

see (13). By repeating the computations in Section 3.1.1, we deduce that qk(m) follows a Gaussian distribution with covari-
ance covqkðmÞ and mean mk given by
covqkðmÞ½m� ¼ skHTHþ kkLTL
h i�1

and mk :¼ EqkðmÞ½m� ¼ covqkðmÞ½m�skHTd �mgk
;

respectively, where sk ¼ Eqk�1ðk;sÞ½s�; kk ¼ Eqk�1ðk;sÞ½k� and gk ¼ kks�1
k . In other words, the solution in Step 4 is explicitly given by
qkðmÞ ¼ N mgk
; skHTHþ kkLTL
h i�1

� �
;

which in practical implementation involves computing the mean mgk
and variance [skHTH + kk LTL]�1. Analogously, we can

derive
qkðk; sÞ / exp EqkðmÞ½ln pðm; k; sÞ�
	 


:

Direct computation shows that qk(k,s) takes a factorized form, i.e., qk(k,s) = qk(k)qk(s), and qk(k) and qk(s) are Gamma dis-
tributions given respectively by
qkðkÞ ¼ G k; a000;
1
2

EqkðmÞ kLmk2
2

h i
þ b0

� �
;

qkðsÞ ¼ G s;a001;
1
2

EqkðmÞ kHm� dk2
2

h i
þ b1

� �
:
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Therefore, the computation of qk(k) and qk(s) involves simply updating their respective parameter pairs, which can be carried
out analytically for qk(m) follows a multivariate Gaussian. Moreover, observing the separability, we have
kkþ1 ¼ Eqkðk;sÞ½k� ¼ EqkðkÞ½k� and skþ1 ¼ Eqkðk;sÞ½s� ¼ EqkðsÞ½s�, and they can be calculated straightforwardly since both qk(k) and
qk(s) follow a Gamma distribution, see (7).

Since each step of the algorithm decreases the functional value and the functional is bounded from below by zero, the
sequence of functional values {DKL(qk(m)qk(k,s)jp(m,k,s))}k is nonincreasing and converges monotonically. Moreover, we
have the next convergence theorem of the sequence {(qk(m)qk(k)qk(s))}k, and for a proof, we refer to Appendix A.2.

Theorem 3.3. The sequence {(qk(m)qk(k)qk(s))}k generated by Alg I has a subsequence converging to a stationary point of the
functional DKL.

As a consequence of the proof of the theorem (c.f. Appendix A.2), the convergence is actually determined by the
sequence of scalars {(kk,sk,gk)}k. This suggests a natural and simple stopping criterion for Alg I: monitoring one or several
of these scalars. Specifically, the regularization parameter gk determines the mean mgk

, which is the quantity of primary
interest. Therefore, we propose the following heuristic stopping criterion for the algorithm: the algorithm stops if there
holds
jgkþ1 � gkj
gk

< tol ð14Þ
for some given tolerance tol. Computationally speaking, it is simpler than directly monitoring the decrease of the divergence
itself, which for high-dimensional problems is more expensive to evaluate.

Finally, we note that in practice the GCV estimate VðgÞ is almost unchanged for g varying over a broad scale while remain-
ing a good approximation to r2

0, so is the estimate (r2)*. In other words, the convergence of the scalar (r2)* is relatively fast
during the iteration procedure. This motivates us to consider a formulation by fixing the value of s at r�2

0 to shed further
lights on the practical convergence behavior of Alg I. Specifically, by (21) from Appendix A.1, the sequence fgk ¼ kkr2

0gk

generated by Alg I can be succinctly written in terms of the following fixed point iteration:
gkþ1 ¼
2a000r2

0

kLmkk2
2 þ r2

0

Pp
i¼1

1
c2

i
þgk
þ 2b0

;

where mk ¼mgk
, and ci are generalized singular values of the matrix pair (H,L) [22], see also Appendix A.1. The next theorem

shows that the sequence {gk}k converges always monotonically. This casts new light on Alg I: The sequence {gk}k should be
monotonic after some initial iterations, i.e., locally monotonic, and thus the algorithm merits a steady convergence.

Theorem 3.4. For any initial guess g0, the sequence {gk}k converges monotonically.
Proof. By the definition of gk, we have
gkþ1 � gk ¼
2a000r2

0

kLmkk2
2 þ r2

0

Pp
i¼1

1
c2

i
þgk
þ 2b0

� 2a000r2
0

kLmk�1k2
2 þ r2

0

Pp
i¼1

1
c2

i
þgk�1

þ 2b0

¼ 2a000r2
0

Dk
kLmk�1k2

2 � kLmkk2
2 þ r2

0

Xp

i¼1

1
c2

i þ gk�1
� 1

c2
i þ gk

� �" #
:¼ 2a000r2

0

Dk
I þ r2

0II
� 


;

where the denominator Dk is defined as
Dk :¼ kLmk�1k2
2 þ r2

0

Xp

i¼1

1
c2

i þ gk�1
þ 2b0

 !
kLmkk2

2 þ r2
0

Xp

i¼1

1
c2

i þ gk

þ 2b0

 !
and the terms I and II in the square bracket are respectively given by
I :¼ kLmk�1k2
2 � kLmkk2

2;

II :¼
Xp

i¼1

1
c2

i þ gk�1
� 1

c2
i þ gk

� �
¼
Xp

i¼1

1
c2

i þ gk�1

� �
c2

i þ gk

� � gk � gk�1ð Þ:
Since the term kLmk�1k2
2 � kLmkk2

2 has the same sign with (gk � gk�1) [9], the sequence {gk}k is monotonic. A trivial lower
bound of {gk}k is zero. Moreover, we note that
gk ¼
2a000r2

0

kLmk�1k2
2 þ r2

0

Pp
i¼1

1
c2

i
þgk�1

þ 2b0

6
a000r2

0

b0
:

The uninform boundedness and its monotonicity imply the desired convergence. h
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3.2. Degenerate approximation

In Approx I, the only assumption on q(m) and q(k,s) is their conditional independence given the observational data d.
Extra assumptions might be invoked to further reduce its complexity. In Approx II, we now consider the case of a degen-
erate q(m), i.e., it takes one value with probability one and the rest with probability zero. Then the Kullback–Leibler diver-
gence DKL reduces to
DKLðqðm; k; sÞjpðm; k; sÞÞ ¼
Z Z

qðk; sÞ ln qðk; sÞ
pðm; k; sÞdkds: ð15Þ
Theorem 3.5. There exists at least one minimizer to the optimization problem (15).
Proof. Note that for fixed m, p(m,k,s) can be regarded as an unnormalized Gamma distribution in both k and s, and by (7),
the normalizing constant c(m) is given by
cðmÞ ¼ C a000
� ��1C a001

� ��1
b0 þ

1
2
kLmk2

2

� �a000
b1 þ

1
2
kHm� dk2

2

� �a001
:

Now by Jensen’s inequality (10), for fixed m the divergence DKL defined in (15) attains its minimum at q(k,s) = c(m)p(m,k,s)
with c(m) defined above. With this choice of q(k,s), we integrate out k and s to obtain the minimum value of the divergence
DKL in terms of m
inf
qðk;sÞ

DKLðqðm; k; sÞjpðm; k; sÞÞ ¼ ln cðmÞ ¼ a001 ln
1
2
kHm� dk2

2 þ b1

� �
þ a000 ln

1
2
kLmk2

2 þ b0

� �
þ ln C a000

� ��1C a001
� ��1

:

The constant ln C a000
� ��1

C a001
� ��1 is irrelevant in the minimization and thus can be ignored. Consequently, we arrive at a re-

duced functional GðmÞ in terms of the solution m only
GðmÞ ¼ a001 ln
1
2
kHm� dk2

2 þ b1

� �
þ a000 ln

1
2
kLmk2

2 þ b0

� �
:

The functional GðmÞ is bounded from below and continuous on Rm, and the assumption ker H \ ker L = {0} implies that it is
also coercive. Therefore, the functional G has at least one minimizer. Consequently, the divergence DKL has at least one
minimizer. h

By differentiating the reduced functional GðmÞ with respect to m and setting it to zero yields
a001
HTðHm� dÞ

1
2 kHm� dk2

2 þ b1

þ a000
LTLm

1
2 kLmk2

2 þ b0

¼ 0;
which after rearranging gives
ðHTHþ gLTLÞm ¼ HTd
with g ¼ a000
a001

1
2kHm�dk2

2þb1
1
2kLmk2

2þb0
. This indicates that the critical point m* is a minimizer of the Tikhonov functional J g� , i.e., m� ¼mg� .

Now by recalling the optimal choice of q*(k,s) for achieving the minimum divergence in the proof of Theorem 3.5, we deduce
that q*(k,s) is proportional to p(m*,k,s) and thus both k and s follow a Gamma distribution. Consequently, the optimality
system at a critical point q*(m,k,s) = d(m �m*)q*(k)q*(s)) of the divergence reads
m� ¼ ðHTHþ g�LTLÞ�1HTd;

q�ðkÞ ¼ G k; a000;
1
2
kLm�k2

2 þ b0

� �
;

q�ðsÞ ¼ G s;a001;
1
2
kHm� � dk2

2 þ b1

� �
:

ð16Þ
Let k� ¼ Eq�ðkÞ½k� and s� ¼ Eq�ðsÞ½s�, then we have g� ¼ k�

s�. Recall the defining equation (r2)* = 1/s*. Thus Approx II estimates r2
0

by
ðr2Þ� :¼ 1
s�
¼

1
2 kHmg� � dk2

2 þ b1
n
2þ a1

:

Analogous to the variance estimate by Approx I, the estimate (r2)* accepts interesting interpretations as a convex combi-
nation of prior and data contributions. Upon adopting a noninformative prior for s, i.e., a1 � 1 and b1 � 0, the estimate (r2)*
is related to VðgÞ by ðr2Þ� � VðgÞ T ðgÞn . For inverse problems with exponentially decaying spectra, which holds for integral
equations of the first kind with smooth kernels, the proportional factor T ðgÞn varies slowly with g and remains of order one
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for g over a very broad scale [9]. Thus the estimate (r2)* also represents an accurate approximation to the exact noise var-
iance r2

0, and it was numerically confirmed for some benchmark inverse problems, e.g. Fredholm integral equations of the
first kind and ill-posed Cauchy problems [9].

Approx II is closely related to the a-Tikhonov method. To illustrate the point, first observe that the optimality condition
of the functional GðmÞ can be rewritten as
HTHmþ a000
a001

1
2 kHm� dk2

2 þ b1

1
2 kLmk2

2 þ b0

LTLm ¼ HTd:
Similarly, by considering the optimality system of the a-Tikhonov functional, the regularization parameter g = ks�1 verifies

g ¼ a00
a01

1
2kHmg�dk2

2þb1
1
2kLmgk22þb0

. By substituting it into the optimality condition of the Tikhonov functional J g, we arrive at its alternative

characterization of the functional J ðm; k; sÞ in terms of m
HTHmþ a00
a01

1
2 kHm� dk2

2 þ b1

1
2 kLmk2

2 þ b0

LTLm ¼ HTd:
Therefore, the optimality condition of Approx II coincides with that of the a-Tikhonov functional J ðm; k; sÞ with
a000 and a001 in place of a00 and a01. The difference is due to the fact that Approx II takes the mean of the PPDF,
whereas the a-Tikhonov method considers the mode. Usually we have inequalities m, n� 1, and thus there holds
a00 � a000 and a01 � a001. Consequently Approx II and the a-Tikhonov method yield practically identical numerical re-
sults. This shows the unifying nature of the variational method in that we can derive several approximations within
the framework. However, Approx II also attempts to quantify the uncertainties of the hyper-parameters. Because
of this interesting connection, the theoretical results [9] developed for the a-Tikhonov method apply equally well to
Approx II. In particular, an analogue of Theorem 3.2 holds also for Approx II, and the comments after Theorem
3.2 apply as well.

Theoretically, the point estimates mg� by both Approx I and II are convergent under identical assumptions. More-
over, both variance estimates (r2)* are in excellent agreement when adopting a noninformative prior for the parameter

s. However, Approx I and II can be different if Eq�ðmÞ kLmk2
2

h i
differs significantly from kLmg� k2

2. The term Eq�ðmÞ kLmk2
2

h i
consists of two components, i.e., the mean kLmg� k2

2 and the variance tr ((s*H TH + k*LTL)�1LTL). Therefore, these two

methods would yield identical results if and only if in the term Eq�ðmÞ kLmk2
2

h i
, the variance component is small com-

pared to the mean component, i.e., trððs�HTHþ k�LTLÞ�1LTLÞ 
 kLmg� k2
2. Otherwise, they might deliver quite different

solutions. This marked difference between Approx I and II arises when, loosely speaking, the MAP is not representative
of the PPDF.

We now consider an algorithm for numerically realizing Approx II. It is of alternating iterative type like Alg I, and de-
rives again from the biconvexity of the functional (15). The complete algorithm is shown in Algorithm 2 (Alg II for short).
Observe again the computation of kk and sk are straightforward as both k and s follow a Gamma distribution.

Algorithm 2. Variational approximation with q(m,k,s) = q(m)q(k,s) and q(m) degenerate

1: Give an initial guess q0(k,s) and tolerance tol, set k = 0 and g0 = 0
2: repeat
3: Set k = k + 1
4: Calculate kk ¼ Eqk�1ðk;sÞ½k�, sk ¼ Eqk�1ðk;sÞ½s�, and gk ¼ kks�1

k

5: Find mk by
mk ¼ HTHþ gkLTL
	 
�1

HTd:
6: Calculate qk(k,s) by
qkðk; sÞ ¼ qkðkÞqkðsÞ;
where qk(k) and qk(s) are Gamma distributions given, respectively, by
qkðkÞ ¼ G k;a000;
1
2
kLmkk2

2 þ b0

� �
and qkðsÞ ¼ G s; a001;

1
2
kHmk � dk2

2 þ b1

� �
:

7: until jgk � gk�1j/gk�1 6 tol
8: Return qk(m)qk(k,s) as the solution
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Due to the close connection between Approx II and the a-Tikhonov method revealed above, Alg II is guaranteed to
converge to a critical point of the functional, see Ref. [9] for an analysis of the a-Tikhonov method. The stopping
criterion can be taken the same as that for Alg I, i.e., monitoring the relative change of the regularization parameter gk,
see (14).

4. Extensions

In this section we briefly discuss two generalizations of the quadratic model in the preceding section to more complicated
models: nonGaussian prior and nonlinear forward models, which arise very often in real-world applications. The goal is to
indicate the potential broad applicability of the variational method, instead of rigorous mathematical justification or theo-
retical properties.

4.1. ‘r prior

This part considers a nonGaussian prior, which recently has received significant interest in several areas, e.g. compressive
sensing in signal processing and image processing [25]. More precisely, the prior p(mjk) is of the form
pðmjkÞ / 1
ZðkÞ e

�kkmkr
r ;
where kmkr
r ¼

P
ijmijr and Z(k) is the normalizing constant. By a change of variable ksr = t, Z(k) can be calculated by

observing
Z 1

0
e�ksr

ds ¼ k�
1
r

Z 1

0
e�tt

1�r
r dt / k�

1
r ;
which further gives ZðkÞ ¼ crk
�m

r with cr being a constant. Consequently, the prior is given by
pðmjkÞ / k�
m
r e�kkmkr

r :
For the ‘r prior, the corresponding Kullback–Leibler divergence cannot be calculated directly. We resort to a majorization–
minimization approach. The basic idea is to utilize an auxiliary variable [17,26] to derive a lower bound for the prior, which
is then iteratively updated. Recall by Young’s inequality, i.e., for a, b P 0 and r 2 [0,2], there holds a

r
2b1�r

2 6
r
2 aþ 1� r

2

� �
b, we

get
a
r
2 6

r
2

aþ 2
r � 1
� �

b

b1�r
2

: ð17Þ
Next we define an auxiliary function M(m,k,v) as below
Mðm; k;vÞ ¼ crk
m
r exp � r

2
k
X

i

m2
i þ 2

r � 1
� �

v i

v1�r
2

i

 !
;

where v ¼ ðv1; . . . ;vmÞT 2 Rm
þ , cr is the constant in the normalizing constant Z(k). By virtue of inequality (17), we have
pðmjkÞP Mðm; k;vÞ 8v 2 Rm
þ :
Observe that for any fixed v, M(m,k,v) is quadratic in m, for which Bayesian inference can be analytically carried out, and
bounds the prior from below. Consequently, a lower bound of the joint distribution p(m,k,s) is given by
pðm; k; sÞP pðdjm; sÞMðm; k;vÞpðkÞpðsÞ � Fðm; k; s;vÞ
and thus we get an upper bound for the divergence, i.e.,
DKLðqðm; k; sÞjpðm; k; sÞÞ 6 DKLðqðm; k; sÞjFðm; k; s;vÞÞ:
The upper bound can be tightened by minimizing it iteratively with respect to both q(m,k,s) and v, which results in a
decreasing sequence of upper bounds and also a better approximation of the true prior p(mjk) by the functional
M(m,k,v).

In sum, we replace the minimization of the Kullback–Leibler divergence by its upper bound in the spirit of classical maj-
orization–minimization method. The structure of the upper bound suggests an alternating iterative procedure as before. The
complete algorithm is given in Algorithm 3 (Alg III for short). In particular, for fixed v, the standard solution of variational
Bayesian analysis can be employed.
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Algorithm 3. Variational approximation with q(m,k,s) = q(m)q(k,s) for ‘r prior

1: Give an initial guess q0(k,s), v0 and tolerance tol, and set k = 0 and compute g1 ¼ Eq0ðk;sÞ½k�=Eq0ðk;sÞ½s�.
2: repeat
3: Set k = k + 1.
4: Find qk(m) by
qkðmÞ ¼ arg min
qðmÞ

DKLðqðmÞqk�1ðk; sÞjFðm; k; s;vk�1ÞÞ:
5: Find vk by
vk ¼ arg min
v2Rm

þ
DKLðqkðmÞqk�1ðk; sÞjFðm; k; s;vÞÞ:
6: Find qk(k,s) by
qkðk; sÞ ¼ arg min
qðk;sÞ

DKLðqkðmÞqðk; sÞjFðm; k; s;vkÞÞ:
7: Calculate kkþ1 ¼ Eqkðk;sÞ½k� and skþ1 ¼ Eqkðk;sÞ½s�, and set gkþ1 ¼ kkþ1s�1
kþ1.

8: until jgk+1 � gkj/gk 6 tol.
9: Return qk(m)qk(k,s) as the solution.

Next we give explicit formulas for each step of the algorithm. Steps 4 and 6 can proceed as before. The distribution qk(m)
is a multivariate Gaussian distribution with covariance covqkðmÞ and mean mk given by
covqkðmÞ½m� ¼ ðskHTHþ kkWkÞ�1
; mk ¼ covqkðmÞ½m�skH Td
with Wk ¼ diagðrðvk
i Þ

r
2�1Þ being a diagonal matrix. The minimization with respect to v in Step 5 can also be carried out explic-

itly componentwise as below
vk
i ¼ arg min

v i

EqkðmÞ m2
i

� 

þ 2

r � 1
� �

v i

v1�r
2

i

from which it follows that vk
i ¼ EqkðmÞ½m2

i �. Similarly, we can deduce that qk(k,s) = qk(k)qk(s) is a Gamma distribution given by
qkðkÞ ¼ G k; a0 þ
m
r
;b0 þ

X
i

ðvk
i Þ

r
2

 !
;

qkðsÞ ¼ G s; a1 þ
n
2
; b1 þ

1
2

EqkðmÞkHm� dk2
2

� �
:

4.2. Nonlinear model

Many practical inverse problems are described by nonlinear forward models, and a linearized model may be insufficient.
Thus it is of great interest to extend the variational Bayesian approach to nonlinear models directly. There have been some
investigations, see e.g. the recent work [27] and references therein. We shall follow the idea of recursive linearization as the
classical Gauss–Newton method for nonlinear optimization problems, which was recently investigated in [27].

To this end, let the nonlinear forward model be HðmÞ : Rm ! Rn. Upon adopting the additive Gaussian noise assumption
on the data d, we may write down the likelihood p(djm,s) as
pðdjm; sÞ / sn
2 exp � s

2
kHðmÞ � dk2

	 

;

where again s denotes the inverse variance. Proceeding as in Section 2, we can easily derive the PPDF. However, calculating
the Kullback–Leibler divergence for general nonlinear forward models is analytically intractable. To ensure tractability and
generality, we approximate the nonlinear forward model H(m) by its first-order Taylor expansion ~HðmÞ around the mode ~m
of the posterior distribution (which for a Gaussian distribution is also the mean), i.e.,
~HðmÞ ¼ Hð ~mÞ þ Jðm� ~mÞ;
where J =rmH is the Jacobian of the forward model H with respect to m evaluated at ~m. With this linearization at hand, we
recover the computational tractability, and in particular, Alg I might be employed for an approximation. Now we can
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describe a variational method for nonlinear models, see Algorithm 4 (Alg IV for short) for the complete algorithm. Observe
that the variational approximation qk(m) still follows a Gaussian distribution, despite the fact that the true conditional dis-
tribution p(mjk,s,d) is nonGaussian. This contrasts sharply with the linear case discussed in Section 3. Note that in the inner
loop of Alg IV, the variational approximation needs not to be carried out very accurately. Ref. [27] suggested one step for the
inner loop, and demonstrated its performance for some problems arising from signal processing. In Alg IV, several different
stopping criteria for the outer loop might be adopted, e.g. based on relative change of the inverse solution m or the regular-
ization parameter g.

Algorithm 4. Variational approximation with q(m,k,s) = q(m)q(k,s) for a nonlinear model H(m)

1: Give an initial guess q0(k,s), ~m0 and tolerance tol, and set k = 0
2: repeat

3: Calculate the linearized model, i.e., ~HðmÞ ¼ Hð ~mkÞ þ Jkðm� ~mkÞ
4: Set k = k + 1
5: Find variational approximation qk(m)qk(k,s) using ~HðmÞ
6: until A stopping criterion is satisfied
7: Return qk(m)qk(k,s) as the solution
5. Numerical experiments and discussions

In this section, we evaluate the developed techniques on linear and nonlinear Cauchy-type problems in heat conduction.
The mathematical formulation and its finite element discretization is first described, and then numerical results are
presented.

5.1. Cauchy-type problems and discretization

Cauchy-type problems of determining an unknown boundary condition (coefficient) on a part of the boundary from over-
determined boundary data on the remaining part arise frequently in heat conduction. For instance, in the study of re-entrant
space shuttles [1,28], one needs to infer the temperature on the outer surface of the shuttle from measurements on the inner
surface. In quenching process [29,30], a coefficient profiling convective heat transfer through the boundary needs to be esti-
mated from measurements of temperature and flux on the accessible part of the boundary.

Mathematically, the problem can be formulated as follows. Let X be an open and bounded domain in Rdðd P 2Þ with a
boundary C. The boundary C is divided into two disjointed parts C = Ci [ Cc, which refer to the part of boundary inaccessible
and accessible to experimental measurement, respectively. The steady-state heat conduction problem could be described by
�r � ðaruÞ ¼ f in X; ð18Þ
where a(x) is the conductivity and f(x) is the source term. Now (18) is subjected to
a
@u
@n
¼ q on Cc and u ¼ g on Co � Cc;
where n is the unit outward normal to Cc. The inverse problem seeks the unknown temperature u(x) (or an unknown coef-
ficient) on the boundary Ci.

This problem is known as the Cauchy problem since both Dirichlet and Neumann boundary conditions are prescribed
simultaneously on a part of the boundary, and the set of data is known as the Cauchy data. It is severely ill-posed, and thus
is mathematically and numerically much more challenging than the forward problem. The unique continuation principle for
elliptic equations ensures the uniqueness of the solution. The stability has been the subject of intensive investigations [33].
However, the solution may not exist when noise is present in the data, and it lacks a continuous dependence on the data. We
refer to [31,8,28,30], and references therein for some numerical methods.

Next we describe the finite element discretization. We describe only the case of unknown temperature for simplicity, and
refer to [32] for identifying boundary coefficients. Formally, the inverse problem can be written as an operator equation
F(h) = g, where h denotes the unknown temperature on the boundary Ci, and the operator F is defined by F : h! uðhÞjCo

with
u = u(h) being the solution to (18) together with the following boundary conditions:
a
@u
@n
¼ q on Cc and u ¼ h on Ci: ð19Þ
To discretize the linear operator F into its discrete counterpart F, we employ the finite element method. Let T h be a shape
regular and quasi-uniform triangulation of the domain X. Then the piecewise linear finite element space Vh,h is defined by
Vh;h ¼ /h 2 Cð�XÞ : /hjT j
2 P1ðT jÞ; /hjCi

¼ h 8T j 2 T h

n o
;

where P1ðT jÞ denotes the space of all linear polynomials on the finite element T j. The finite element solution uh 2 Vh, h to (18)
and (19) solves the variational equation
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Z
X
aruh � r/hdx ¼

Z
X

f /hdxþ
Z

Cc

q/hds 8/h 2 Vh;0:
The unknown temperature h is parameterized by
hðxÞ ¼
Xm

j¼1

mjwjðxÞ;
where wj(x) are finite element basis functions defined on Ci, m is the number of basis functions and mj are the unknowns to
be estimated. We denote by m the vector (m1,m2, . . . ,mm)T. The linearity of the problem enables the following splitting:
FðmÞ ¼ Hmþ uH;
where the function uH is the restriction of the finite element solution to (19) with h = 0 to the boundary Co, and H 2 Rn�m is a
sensitivity matrix with n being the number of the measurements on the boundary Co, i.e., the jth column of H is the finite
element solution vh 2 Vh;wj

of the variational equation
Z
X
arvh � r/hdx ¼ 0 8/h 2 Vh;0;
restricted on the boundary Co. Then the inverse problem can be written in the form of (1) with d ¼ g� uH being the data,
where the vector g stands for the discrete temperature measurements on Co.
5.2. Numerical experiments

This part presents numerical results to illustrate the variational method. Consider the Laplace equation, i.e. a(x) = 1 and
f(x) = 0 in (18). The domain X under consideration is a unit square (0,1) � (0,1), and the boundaries Ci and Cc are
Ci = [0,1] � {1} and Cc = CnCi, respectively. The problem is discretized using 3200 triangular finite elements. Unless other-
wise specified, the boundary Co is set to Co = {0,1} � (0,1), and the number n of measurements on the boundary Co is 80. All
the computations were performed on a personal computer with 1.00 GB RAM.

The first two examples are taken from [8]. Then only the matrix W = LTL of the regularizing matrix L is needed. In our
experiments, the matrix W for Examples 1 and 2 is given by W1 ¼ LT

1L1, where L1 2 Rðm�1Þ�m is the first-order finite difference
operator, and W2 = mW1 + I, where I 2 Rm�m is the identity matrix, which corresponds to a weighted H1 norm. The resulting
PPDF (8) is sampled using the standard Gibbs sampler, and the length of the Markov chain is 200,000 with the first 20,000
realizations discarded as transient states. The mixing of the Markov chain is monitored by visually inspecting the trace plot
and calculating the correlation coefficient as in Ref. [8]. We note that a smaller number of MCMC iterations, e.g. 5 � 104, can
yield a reasonable approximation to the mean [8], but it is insufficient for the variance components as the latter is far more
challenging to approximate. The initial guesses for m, k and s for the Gibbs sampler are 0, 10 and 100, respectively, and the
results are insensitive to these initial guesses. The values of parameter pairs (a0,b0) and (a1,b1) are fixed at (1,1 � 10�3) and
(1,1 � 10�10), respectively. These initial guesses are used as q0(k)q0(s) for Alg I and II as well. Unless otherwise specified,
these parameters apply also to the other two examples.

The synthetic noisy data d are generated by di ¼ �di þmax16i6nfj�dijgexi, where e denotes the relative noise level, and xi

are standard normal random variables realized with MATLAB function randn. As the noisy data d depends on the specific
noise realization of the random variable x, the inverse solution differs for different noise realizations. In particular, the reg-
ularization parameter g* and the mean value m* are realization-dependent. To assess the robustness of the methods under
consideration, i.e., the MCMC, Approx I and II, with respect to noise realization, and to give the reader a feeling of their
overall performance in a statistical sense, we shall test 1000 sets of realizations for Examples 1 and 2. We reiterate that Ap-
prox II coincides with the a-Tikhonov method [9] in terms of point estimate, see Section 3.2, and thus numerical results for
the latter are not presented. Quantities of interest, e.g. regularization parameter g*, relative reconstruction error
e = km* �m�k2/km�k2 of the mean m* and estimated noise level, are first computed for each realization and are then sum-
marized in the form of probability densities estimated via kernel density estimation [8]. All the estimates presented below
are defined Section 3, e.g. k*, (r2)* = 1/s* and g* = k*/s*, with their superscript * being frequently omitted for notational sim-
plicity, and the method used for obtaining them will be indicated by subscript, i.e., the subscripts ai, aii and mc are the short-
hand notation for Approx I, Approx II and the MCMC, respectively. The nonlinear extensions in Section 4 are inherently of
the type Approx I but with some further approximations, e.g. linearization, and will be differentiated by the respective algo-
rithm, i.e., subscripts aiii and aiv for Alg III and Alg IV, respectively.

To evaluate the accuracy of these methods, we also show the optimal regularization parameter gopt, i.e., the one which
achieves minimal reconstruction error in Tikhonov regularization, and the corresponding error eopt, for the first three exam-
ples. Since there is no known numerically efficient method for computing gopt, we have opted for a sampling strategy. More
precisely, the optimal gopt is computed as follows: we first evaluate the errors for 200 uniformly distributed values for the
regularization parameter in a logarithmic scale in the interval [1.0 � 10�16,1], and then take the one yielding the smallest
error as the optimal gopt.
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5.2.1. Example 1: smooth solution
As the first example, we consider the case of reconstructing a smooth solution. The exact solution to the Laplace equation

is given by
(a

Fig
uðxÞ ¼ sinðpx1Þepx2 þ x1 þ x2; x ¼ ðx1; x2Þ 2 X:
The boundary conditions can be computed straightforwardly.
First we study the robustness of the methods with respect to noise realization. The densities reflect the sampling distri-

bution of point estimates, e.g. g* and (r2)*. The probability density p(g) of the regularization parameter g for Example 1 with
e = 3% (e will be omitted hereafter) noise is shown in Fig. 1(a). The regularization parameter gai by Approx I graphically coin-
cides with that by the MCMC, and is smaller than that by Approx II, i.e., gaii, however, the discrepancies are within a factor
of two. Moreover, the densities are narrowly peaked, and thus both Approx I and II are robust with respect to noise real-
ization. The mean m* of the Bayesian solution is also random, and the probability density p(e) of the reconstruction error e of
the mean m* is shown in Fig. 1(b). The errors eai and eaii are very similar albeit the latter is slightly smaller. The estimates r2

ai

and r2
aii have the same magnitude, see Fig. 1(c), and both agree well with the exact variance r2

0. Noting the defining identity
g = ks�1, the difference between gai and gaii is mostly attributed to that between Eq�ðmÞ kLmk2

2

h i
and kLm�k2

2. For all three
quantities under consideration, the results by Approx I and the MCMC almost always coincide, and thus Approx I faithfully
captures the true PPDF.

Next we examine the methods for one specific noise realization in detail. Typical numerical results for Example 1 are
shown in Figs. 2 and 3 and Table 1, where for the ease of comparison the optimal regularization parameter gopt and the cor-
responding error eopt are also presented. The posterior mean mmc agrees excellently with the exact solution, and practically
identical with mai and maii: All three numerical solutions are graphically indistinguishable. The standard deviation std (m) of
the numerical solution is shown in Fig. 2(b). std (m) can quantify the uncertainties associated with the mean, and thus can be
used to assess the plausibility of a specific solution [13]. The uncertainty bounds, roughly indicated by the estimated vari-
ance, given by the MCMC and Approx I agree well, however, the latter slightly underestimates. Note that the std (m) curve
by the MCMC is jaggy despite the large number of samples used for estimation. Interestingly, the entire covariance structure
is very accurately captured, see Fig. 3: The covariance shape estimated by the MCMC and that by Approx I almost coincide,
although that by the MCMC has some small oscillations along various ridges, which might be attributed to the insufficient
number of MCMC samples. The magnitude of the covariance decays rapidly away from diagonal. Note that Approx II yields
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Fig. 2. (a) Mean and (b) standard deviation for Example 1 with 3% noise.



Fig. 3. The covariance for Example 1 with 3% noise by (a) MCMC and (b) Approx I.

Table 1
Numerical results for Example 1.

e (%) r0 rmc rai raii gmc gai gaii gopt

1 1.97e�2 2.10e�2 2.07e�2 1.96e�2 3.70e�5 3.58e�5 6.64e�5 1.43e�3
3 5.91e�2 6.28e�2 6.20e�2 5.90e�2 3.01e�4 2.87e�4 6.04e�4 3.83e�3
5 9.84e�2 1.05e�1 1.03e�1 9.86e�2 7.83e�4 7.52e�4 1.71e�3 5.67e�3

emc eai eaii eopt kmc kai kaii jqm,sj1 jqm,kj1

1 2.54e�2 2.31e�2 1.85e�2 6.56e�3 8.37e�2 8.32e�2 1.73e�1 3.66e�2 1. 69e�1
3 3.44e�2 3.13e�2 2.27e�2 1.05e�2 7.63e�2 7.46e�2 1.74e�1 2.70e�2 1. 44e�1
5 3.29e�2 3.34e�2 2.11e�2 1.38e�2 7.15e�2 7.07e�2 1.76e�1 3.25e�2 1. 34e�1
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no uncertainty estimate for the inverse solution m*. The variance estimate for the inverse solution m, either by Approx I or
MCMC, shrinks as the noise level e decreases, i.e., the probability bound sharpens accordingly. The computing times with
MATLAB 7.0 required for Approx I, Approx II and the MCMC are 0.32 s, 0.15 s and 203 s, respectively. This clearly shows
the computational efficiency of the variational method over the MCMC.

The estimates rmc, rai and raii agree well with the exact variance r0. The first two are identical within sampling error, and
are less accurate than raii, which concurs with previous numerical observations [8]. The probability bounds by the MCMC,
Approx I and II are fairly close. For instance, in case of 3% noise, the estimated std (r) by the three methods is 6.65 � 10�4,
6.31 � 10�4 and 5.71 � 10�4, respectively. Both Approx I and II slightly under-estimate the uncertainties, however, the lat-
ter is more severe. The accuracy errors emc, eai and eaii are still comparable albeit Approx II is marginally more accurate for
all three noise levels, and all are comparable with optimal value eopt. Also observe that the estimates kmc and kai are very
close, and their magnitude is about half of kaii. However, the estimated std (k) differs markedly. For instance, in case of
3% noise, std (k) by these three methods is 3.28 � 10�2, 2.20 � 10�2 and 5.12 � 10�2, respectively, and thus the uncertainty
bounds by Approx I and II are imprecise. The estimated value of k seems relatively independent of the noise level for all the
methods, and thus the regularization parameter g is of order r2

0. This can cause under-regularization in case of low noise
levels in accordance with classical inverse theory and Theorem 3.2, although it is not conspicuous for severely ill-posed prob-
lems. Strategies that adapt automatically to the noise level might be necessary for arbitrarily varying noise levels, see Ref.
[24] for such a strategy in the context of the a-Tikhonov method. The excellent agreement between results by the MCMC
and that by Approx I indicates that Approx I captures faithfully the PPDF, and thus its guidelines and mathematical under-
pinnings may also apply to the hierarchical formulation.

The fundamental assumption of the variational method is conditional independence of m and (k,s) given the data d. The
invalidity of this assumption is expected to render the approximations inaccurate or even useless. To interrogate the
assumption for this example, we calculate the correlation coefficient vectors qm,s and qm,k between the vector m and k
and s, respectively, from the MCMC samples. The correlation coefficient (vector) between the vector m and scalars are com-
puted componentwise, i.e., with mi. The results are shown in Fig. 4, where the abscissa i denotes the ith component. Overall,
the correlation coefficients between m and s are small with a maximum norm jqm,sj1 smaller than 0.05 for all three noise
levels, and thus the assumption seems valid. The correlation coefficients between m and k are slightly larger with the max-
imum norm jqm,kj1 close to 0.18, see also Table 1. Therefore, the correlation between m and (k,s) is indeed relatively weak.
This partially validates the conditional independence assumption and explain the excellent agreement between the covar-
iances by the MCMC and that by Approx I observed in Fig. 3.

The convergence of Alg I and II is shown in Fig. 5(a) and (b), respectively. We show only the scalars k, s and g because
the convergence of the algorithms are fully determined by these quantities. To indicate quantitatively the convergence of
these two algorithms, we calculate the asymptotic convergence rate r� :¼ limk!1

gk�g�
gk�1�g� for the regularization parameter,

which can be empirically calculated from the sequence {gk}k. In case of 1%, 3% and 5% noise, the empirical convergence rate
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Fig. 5. Convergence of Alg (a) I and (b) II for Example 1 with 3% noise.
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r* of Alg I is calculated to be 5.02 � 10�1, 5.51 � 10�1 and 5.79 � 10�1, respectively, whereas that for Alg II is 1.22 � 10�2,
2.50 � 10�2 and 3.39 � 10�2, respectively. Therefore, Alg II converges much faster than I, which is also clear from Fig. 5.
The convergence of both algorithms deteriorates with the increase of the noise level, but the effect on Alg I is less substan-
tial than that on Alg II. Interestingly, a striking convergence within one iteration is observed for the estimate raii. The con-
vergence for rai is slightly slower, i.e., convergence within three iterations. Nonetheless, it is still much faster than that for
other quantities. This substantiates the working assumption of fixing s at r�2

0 in Theorem 3.4. Theorem 3.4 predicts a local
monotonic convergence of the sequence {gk}k, which is also corroborated by the numerical results.

Finally, we study the sensitivity of the numerical results with respect to the prior parameter pairs (a0,b0) and (a1,b1). Our
analysis in Section 3 indicates that a parameter pair (a1,b1) with a1 = 1 and b1 close to zero is sufficient, but it gives no ex-
plicit indication on (a0,b0). Recall the defining relation for g of Approx II, i.e., g ¼ a000

1
2kLmgkþb0

r2. Now if the value of a0 not too
large, it is dominated by m

2 in the numerator a000 ¼ m
2 þ a0, and thus can only have marginal impact on the inverse solution.

Therefore, we conduct the sensitivity analysis only for b0. The results are presented in Table 2. Large values of b0, e.g.
1000, overwhelm the term 1

2 kLmgk2
2, and thus the latter would have little impact on the solution procedure. Then Approx

II is tantamount to minimizing the residual, which renders the inverse solution under-regularized, see the last two rows
of Table 2. Strikingly, the estimate (r2)* remains accurate. The term 1

2 kLmgk2
2 comes into play as the value of b0 decreases,

and the solution is insensitive to its actual value as long as it is small enough. This is confirmed by the observation that the
results, e.g. error e, are practically identical for b0 varying over the range [1 � 10�1,1 � 10�7]. These heuristic analysis and
Table 2
Numerical results for Example 1 with 3% noise.

b0 rai raii gai gaii eai eaii kai kaii jqm,sj1 jqm,kj1

1e�7 6.20e�2 5.90e�2 2.87e�4 6.04e�4 3.13e�2 2.27e�2 7.46e�2 1.74e�1 3. 32e�2 1.86e�1
1e�5 6.20e�2 5.90e�2 2.87e�4 6.04e�4 3.13e�2 2.27e�2 7.46e�2 1.74e�1 2. 38e�2 1.29e�1
1e�3 6.20e�2 5.90e�2 2.87e�4 6.04e�4 3.13e�2 2.27e�2 7.46e�2 1.74e�1 2. 70e�2 1.44e�1
1e�1 6.20e�2 5.90e�2 2.86e�4 6.03e�4 3.13e�2 2.27e�2 7.45e�2 1.73e�1 3. 60e�2 8.74e�2
1e1 6.20e�2 5.89e�2 2.51e�4 5.23e�4 3.29e�2 2.42e�2 6.52e�2 1.50e�1 3. 25e�2 1.25e�1
1e3 6.24e�2 5.87e�2 2.05e�5 3.68e�5 8.40e�2 6.81e�2 5.27e�3 1.07e�2 5. 90e�2 1.88e�1
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numerical observations hold also for Approx I, see Table 2. Finally, we remark that the conditional independence assump-
tion seems relatively independent of the parameter b0 for the magnitude of the correlation coefficients jqm,kj1 and jqm,sj1
remains almost unchanged as the value of b0 varies, see the last two columns of Table 2.

5.2.2. Example 2: nonsmooth solution
As the second example, we consider a more challenging case of reconstructing a nonsmooth solution. The boundary con-

ditions are prescribed as follows:
(

Fig.
uðxÞ ¼
2x1; x 2 ½0; 1

2� � f1g
2� 2x1; x 2 ½12 ;1� � f1g

(
and

@uðxÞ
@n

¼ 1; x 2 Cc:
The exact solution to the Laplace equation is unavailable, and thus the numerical solution to the forward problem on a finer
mesh is taken as the exact data.

As before, we first investigate the robustness of the methods with respect to noise realization. The probability density p(g)
for Example 2 is shown in Fig. 6(a). The distributions of both gai and gaii are narrowly peaked and thus insensitive to noise
realizations, but the magnitude of former is smaller. In spite of the apparent discrepancies, the differences between the er-
rors eai and eaii are insignificant. The estimates rai and raii are almost identical. Therefore, the marked difference between gai

and gaii is attributed to that between kLm�k2
2 and Eq�ðmÞ kLmk2

2

h i
, which in turn boils down to the dominance of the variance

component over the mean component kLm�k2
2 in the term Eq�ðmÞ kLmk2

2

h i
. An excellent agreement of the results by Approx I

and the MCMC is again observed, and they graphically almost coincide with each other, as in Example 1.
Exemplary numerical results for Example 2 are shown in Figs. 7 and 8 and Table 3. The posterior mean mmc agrees rea-

sonably well with the exact solution, taking into account the nonsmoothness. However, the sharp corner is not accurately
resolved because of the smoothing nature of the prior. The numerical reconstructions mai and maii are practically identical
in terms of the error e, however, the profiles of mai and maii differ significantly since Approx II selects a larger regularization
parameter. Interestingly, the errors eai and eaii are close to each other, which is attributed to the fact that the nonsmooth part
is poorly approximated and the corresponding error dominates. The probability bound is also adversely affected by the non-
smoothness and not so sharp as for Example 1. Moreover, Approx I under estimates std (m) by about 20% compared with
the MCMC result, nonetheless, the shape of the covariance structure is still resolved accurately, see Fig. 8. The mechanism of
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6. The estimated probability density of (a) regularization parameter g, (b) accuracy error e, and (c) variance r2 for Example 2 with 3% noise.
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Fig. 7. (a) Mean and (b) standard deviation for Example 2 with 3% noise.



Fig. 8. The covariance for Example 2 with 3% noise by (a) MCMC and (b) Approx I.

Table 3
Numerical results for Example 2.

e (%) r0 rmc rai raii gmc gai gaii gopt

1 2.66e�2 2.82e�2 2.87e�2 2.70e�2 5.78e�4 5.54e�4 1.62e�3 2.12e�3
3 7.99e�2 8.46e�2 8.34e�2 8.29e�2 4.36e�3 3.98e�3 1.80e�2 8.41e�3
5 1.33e�1 1.41e�1 1.40e�1 1.41e�1 1.23e�2 1.06e�2 7.07e�2 1.52e�2

emc eai eaii eopt kmc kai kaii jqm, sj1 jqm,kj1

1 9.36e�2 9.39e�2 8.63e�2 8.59e�2 7.27e�1 7.16e�1 2.23e0 3.65e�2 1.20e�1
3 1.26e�1 1.23e�1 1.16e�1 9.52e�2 6.07e�1 5.72e�1 2.62e0 6.71e�2 2.04e�1
5 1.21e�1 1.13e�1 2.26e�1 1.06e�1 6.11e�1 5.46e�1 3.53e0 7.65e�2 2.43e�1
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Fig. 9. The correlation coefficient between m and (a) s and (b) k for Example 2.

7336 B. Jin, J. Zou / Journal of Computational Physics 229 (2010) 7317–7343
under-estimation in the variance estimation remains unclear, and we refer to [34] for some discussions. The variance of m
decreases as the noise level decreases albeit more slowly. The correlation coefficients between m and s and k seem a bit lar-
ger, and tend to increase slightly as the noise level increases, see Fig. 9.

The estimates rmc, rai and raii agree well with the exact variance r0. The reconstruction errors emc and eai are very close to
each other and both are still close to eopt, the optimal one, and eaii suffers from over-regularization in case of 5% noise. Ob-
serve that the estimates kmc and kai are close for all three noise levels and decrease slightly with the increase of the noise
level, whereas kaii increases mildly. Consequently, gmc and gai seem of order r2

0, while gaii tends to decay at a rate faster than
r2

0, which is not close to the optimal value in all three cases. This accounts for its severe over-regularization in case of 5%
noise. Therefore, Approx I is less sensitive to the variation of noise level than Approx II. Interestingly, raii still represents
an excellent estimate of r0. The numerical results are insensitive to the value of the parameter b0 so long as its value is suf-
ficiently small, see Table 4. Approx I yields comparable results with the MCMC, and thus it captures better the PPDF than
Approx II. Also the correlation coefficients seem relatively independent of b0 so long as its value is small.

The convergence of the algorithms is shown in Fig. 10. The empirical convergence rate r* of Alg I is 6.52 � 10�1,
7.44 � 10�1 and 7.84 � 10�1, respectively, in case of 1%, 3% and 5% noise, whereas that of Alg II is 7.43 � 10�2,
2.19 � 10�1 and 3.89 � 10�1, respectively. Therefore, the convergence rate for both algorithms is adversely affected by
increasing the noise level. Also the nonsmoothness has a deleterious effect on the convergence, and its effect on Alg II

is more significant than on Alg I. A striking convergence with one iteration is again observed for the scalar raii.



Table 4
Numerical results for Example 2 with 3% noise.

b0 rai raii gai gaii eai eaii kai kaii jqm,sj1 jqm,kj1

1e�7 8.35e�2 8.29e�2 4.02e�3 1.80e�2 1.22e�1 1.16e�1 5.77e�1 2.62e0 6. 55e�2 2.07e�1
1e�5 8.35e�2 8.29e�2 4.02e�3 1.80e�2 1.22e�1 1.16e�1 5.77e�1 2.62e0 6. 51e�2 2.13e�1
1e�3 8.35e�2 8.29e�2 4.02e�3 1.80e�2 1.22e�1 1.16e�1 5.77e�1 2.62e0 6. 71e�2 2.04e�1
1e�1 8.35e�2 8.28e�2 3.94e�3 1.75e�2 1.23e�1 1.14e�1 5.66e�1 2.55e0 6. 88e�2 2.04e�1
1e1 8.33e�2 8.13e�2 1.47e�3 4.90e�3 4.94e�1 1.11e�1 2.12e�1 7.42e�1 4. 86e�2 1.64e�1
1e3 8.38e�2 8.00e�2 3.20e�5 7.18e�5 8.42e�1 5.46e�1 4.56e�3 1.12e�2 2. 61e�2 1.34e�1
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Fig. 10. Convergence of Alg (a) I and (b) II for Example 2 with 3% noise.
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5.2.3. Example 3: ‘r prior
This example is adapted from Example 1, but with an ‘r prior, i.e. pðmjkÞ / k

m
r e�kkmkr

r . We fix r = 1.9, which is nonquadratic,
and thus the popular Gibbs sampler is not directly applicable. For this example, the parameter pair (a0,b0) is taken to be
(1 � 103,1 � 10�3), and the auxiliary vector v is initialized with all entries equal to one.

The numerical results for Example 3 with various noise levels by Alg III and the MCMC are summarized in Table 5. The
standard Metropolis–Hastings algorithm converges very slowly. To alleviate the problem, we employed a blocking strategy:
update m only three sites each time with the Metropolis–Hastings algorithm and cycle over all the sites, and update k and s
with the Gibbs sampler. The proposal distribution in the algorithm is a symmetric Gaussian random walk sampler with stan-
dard deviation 0.1. The chain is run to a length of 5 � 105, and the last 4 � 105 samples are used for estimating relevant sta-
tistical quantities.

The means of the two approximations are fairly close to each other. Since the value of exponent r is close to 2, we expect
solutions similar to that of Example 1. This is numerically observed from Fig. 11(a). The standard deviation by MCMC is
slightly larger than that by Approx III, see Fig. 11(b). However, there are many not-so-small oscillations throughout the
covariance by the MCMC, see Fig. 12, despite the large number of samples used for estimation.

The results in Table 5 indicate that the automatically determined reconstruction by the hierarchical formulation is close
to the optimal choice. For a graphical illustration, we refer to Fig. 11(a) for the mean, and 11(b) for the respective covariance.
Alg III merits a steady and fast convergence as Alg I and II and in practice the convergence is achieved within five iter-
ations, see Fig. 11(c). Ten iterations of the algorithm take 0.109 s, whereas the MCMC (5 � 105 iterations) takes 385 s. This
well illustrates the versatility of the variational method for approximate Bayesian inference.

5.2.4. Example 4: nonlinear model
The final example is a nonlinear inverse problem using Cauchy data, which arises in corrosion detection [30,32]. Now the

goal is to estimate the Robin coefficient c(x) of a Robin boundary condition on Ci, i.e.,
Table 5
Numeri

e (%)

1
3
5

a
@u
@n
þ cu ¼ cua x 2 Ci:
cal results for Example 3.

r0 raiii rmc gaiii gmc gopt eaiii emc eopt kaiii kmc

1.97e�2 2.09e�2 2.10e�2 9.45e�5 9.47e�5 7.49e�5 1.55e�2 1.80e�2 1. 53e�2 2.15e�1 2.15e�1
5.91e�2 6.57e�2 6.58e�2 9.35e�4 9.38e�4 2.43e�4 3.56e�2 3.71e�2 2. 65e�2 2.16e�1 2.16e�1
9.84e�2 1.20e�2 1.20e�1 3.15e�3 3.21e�3 5.35e�4 6.00e�2 6.11e�2 3. 42e�2 2.19e�1 2.19e�1
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Fig. 11. Numerical results for Example 3 with 3% noise: (a) mean, (b) standard deviation and (c) convergence of Alg III.

Fig. 12. The covariance for Example 3 with 3% noise by (a) MCMC and (b) Approx III.
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Here @u
@n ¼ �1 on Cc, ua = 0 and f = � 4. For this example, we set Co = Cc. The Robin coefficient to be estimated is c = 1 + x1. As

before, we discretize the coefficient c(x) with a mesh size h = 0.05, which gives a vector m of 21 scalar parameters. The reg-
ularization matrix L is the second-order finite difference operator. The parameter pair (a0,b0) is set to (1 � 102,1 � 10�3). The
initial guess for Alg IV is set to 2.

For this example, the standard Metropolis–Hastings algorithm together with a simple blocking strategy and a random
walk proposal distribution suffers from very slow convergence. There are several other techniques that may improve the
mixing the MCMC chain, e.g. prior preconditioning strategy in [35] and delayed rejection-adaptive Metropolis sampler
(DRAM) [36]. The former combines a (checkerboard) blocking strategy with proposals from the prior (either directly or based
on pivoted Chelosky decomposition), whereas the latter integrates the idea of multiple-stage proposal with utilizing accu-
mulated knowledge of the PPDF from sample paths. Instead of employing these techniques, here we have opted for an intel-
ligently designed MCMC algorithm to obtain a reference Bayesian solution. Firstly, we utilize the variational approximation
as the proposal distribution (independent sampler) in the Metropolis–Hastings algorithm. Secondly, we accelerate the
MCMC sampling by reduced-order modeling via proper orthogonal decomposition (POD) [32], which is one of the fastest
algorithms available. The snapshots for generating the POD basis are taken at 5000 uniformly distributed points in the hyper-
cube [0.1,3]21. For the inversion, 30 POD basis functions are employed, which gives an average relative error of 1.28 � 10�6 at
1000 random test points in the hypercube and thus is deemed sufficient. In order to shorten the burning period for the
MCMC chain, we took the mean of the variational approximation as the initial guess for m. The chain is run to a length
of 5 � 104, the acceptance ratio is 80%, and the last 4 � 104 samples are used for estimation. A much longer chain does
not improve the result greatly. The computing time for the MCMC and the variational method is 1.61 � 102 s (5 � 104 iter-
ations) and 11 s (20 iterations), respectively, where for the MCMC the part of calculating the POD basis is excluded.

The numerical results for Example 4 with 3% noise in the data by Alg IV are shown in Figs. 13 and 14. The mean by the
MCMC and the variational method almost coincides with each other and both are in good agreement with the exact one, with
the respective reconstruction error emc = 1.93 � 10�2 and eaiv = 1.97 � 10�2. The variational method estimates also excel-
lently the standard deviation std(m) relative to the MCMC. Especially, the covariance shapes are almost identical, see
Fig. 14. Note that the covariance by the MCMC is free from spurious oscillations, although the number of MCMC samples
is not large. In particular, this shows that the variational method is a promising preconditioning technique to the MCMC
for handling high-dimensional problems. Similar to other algorithms, Alg IV converges steadily and quickly, and the con-
vergence is achieved within 10 iterations. In Alg IV, the inverse variance s converges much faster than other quantities,
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Fig. 13. Numerical results for Example 4 with 3% noise: (a) mean, (b) standard deviation, and (c) convergence of Alg IV.

Fig. 14. The covariance for Example 4 with 3% noise in the data: (a) MCMC and (b) Alg IV.
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and its convergence is practically achieved within three iterations. The estimated noise levels raiv = 2.32 � 10�1 and
rmc = 2.32 � 10�1 are both in good agreement with the exact one r0 = 2.68 � 10�1.
6. Concluding remarks

We have investigated the variational method for approximating hierarchical Bayesian formulations of ill-posed problems.
The idea is to approximate the PPDF by conditionally independent distributions of the solution and parameters in the Kull-
back–Leibler divergence. Two approximate PPDF are derived within the framework. The existence of a minimizer to the func-
tionals is established, properties of the minimizers are studied, and some heuristic guidelines for specifying the prior
parameter pairs are provided. Alternating iterative algorithms are proposed for minimizing the functionals, and their con-
vergence properties are discussed. Extensions of the framework to nonlinear problems, either nonGaussian priors or nonlin-
ear forward models, have also been discussed. Numerical results for Cauchy type problems in heat transfer indicate that both
Approx I and II can estimate accurately the inverse solution and the hyper-parameters with their uncertainties quantified,
and the algorithms feature a fast and steady convergence. Moreover, Approx I and its variants can capture faithfully main
features of the PPDF, and they provide valuable approximate solutions to nontrivial Bayesian inference problems. In addition,
the approximation can serve as an effective promising preconditioner for the MCMC.

There are several avenues deserving further research. Firstly, the proximity of the variational approximations to the PPDF
was assessed using the MCMC, which is often expensive. Therefore, it is of paramount importance to derive computable error
bounds and to develop efficient numerical methods to estimate the errors. Secondly, the convergence rate of the algorithms
remains to be established despite the steady and fast convergence numerically observed, which will shed new insights into
their pros and cons and designing acceleration strategies. Thirdly, the extension of the framework to a functional analytic
setting, e.g. implicit operator formulations involved in nonlinear inverse problems and nonstandard regularization terms,
is of interest. In particular, although the generalizations of the variational method to general ‘r priors and nonlinear forward
models have been briefly discussed, a refined theoretical investigation and more extensive numerical verifications would be
very helpful. Finally, some engineering problems, e.g. super-resolution and hyperspectral imaging, call for complex regular-
ization formulations involving multiple data fitting terms and/or regularization terms due to heteroscedastic nature of the
data and multiscale feature of the solution. The development of the variational framework for these more general formula-
tions is also impending.
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Appendix A. Proofs of Theorems 3.2 and 3.3

A.1. Proof of Theorem 3.2

For fixed s ¼ r�2
0 , it follows from (13) that g� ¼ k�r2

0 satisfies
g� kLmg� k2
2 þ trððH THþ g�LTLÞ�1LTLÞr2

0 þ 2b0

h i
¼ 2a000r

2
0: ð20Þ
We also recall the generalized singular value decomposition [22]. For any pair of matrices H 2 Rn�m and L 2 Rp�m with
n P m P p and rank (L) = p, there exists
H ¼ U
R 0
0 Im�p

� �
X�1; L ¼ VðM 0p�ðm�pÞÞX�1;
where the matrices U ¼ ½u1 u2; . . . ;um� 2 Rn�m and V ¼ ½v1 v2; . . . ;vp� 2 Rp�p are column orthonormal, the matrix
X ¼ ½x1 x2; . . . ;xm� 2 Rm�m is nonsingular, and R = diag (r1, . . . ,rp) and M = diag(l1, . . . ,lp) are diagonal matrices. Moreover,
the nonnegative diagonal entries of R and M are ordered and normalized such that 0 6 r1 6 � � � 6 rp 6 1,
1 P l1 P � � �P lp > 0, r2

i þ l2
i ¼ 1 for i = 1, 2, . . . ,p. The ratios ci ¼

ri
li

are known as the generalized singular values of the ma-
trix pair (H,L).

Lemma A.1. There exists at least one and at most 2p + 1 positive solutions to (20).
Proof. By applying GSVD, the regularization parameter g* solves the nonlinear equation
g� kLmg� k2
2 þ r2

0

Xp

i¼1

1
c2

i þ g�
þ 2b0

" #
¼ 2a000r

2
0:
Let f ðgÞ ¼ g½kLmgk2
2 þ r2

0

Pp
i¼1

1
c2

i
þgþ 2b0�, then f(g) is continuous and
lim
g!0

f ðgÞ ¼ 0 and lim
g!þ1

f ðgÞ ¼ þ1:
Therefore, by the continuity, there exists at least one positive solution to f ðgÞ ¼ 2a000r2
0. Let yi ¼ uT

i d be the Fourier coefficients

of the data d. Then we have kLmgk2
2 ¼

Pp
i¼1

c2
i

y2
i

ðgþc2
i
Þ2

[9]. Hence f(g) can be expanded as a rational f ðgÞ ¼ PðgÞ
QðgÞ with P(g) and Q(g)

being polynomials in g of order 2p + 1 and 2p, respectively. Now the second assertion follows from the fundamental theorem
of algebra. h
Lemma A.2. Assume that the realization of the random variable x satisfies kxk2
2 6 cr2

0. Then there exist two constants cr,0 and cr,1

dependent on a000 such that cr;0r2
0 6 g� 6 cr;1r2

0.
Proof. From (20), we note that
g� ¼ 2a000r2
0

kLmg� k2
2 þ r2

0

Pp
i¼1

1
c2

i
þg� þ 2b0

6
a000r2

0

b0
: ð21Þ
The second inequality follows by setting cr;1 ¼
a000
b0

. From the variational characterization of the mean mg� , it follows directly
that:
kHmg� � dk2
2 þ g�kLmg� k2

2 6 kHmy � dk2
2 þ g�kLmyk2

2:
Therefore, we deduce that kLmg� k2
2 6

cr2
0

g� þ kLmyk2
2. Combined with (20), we deduce that
g�
cr2

0

g�
þ kLmyk2

2 þ r2
0

Xp

i¼1

1
c2

i þ g�
þ 2b0

 !
P 2a000r

2
0:
Rearranging the terms and letting cr;0 ¼
2a000�p�c

kLmyk2
2þ2b0

, we arrive at the desired lower bound. h
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Note that the lower bound cr,0 can be negative for fixed a000. However, it can be made positive and meaningful if a000 scales as
r�d

0 with 0 < d < 2. In particular, the lower bound can be set to cg;0 ¼
a000

2ðb0þcmÞ for sufficiently small r0.
Proof of Theorem 3.2

Proof. By the minimizing property of mg� , we have
kHmg� � dk2
2 þ g�kLmg� k2

2 6 kHmy � dk2
2 þ g�kLmyk2

2:
From this and Lemma A.2, we deduce that
kHmg� � dk2
2 6 cr2

0 þ g�kLmyk2
2 6 cr2

0 þ cr;1r2�d
0 kLmyk2

2 ! 0;
as the noise level r0 ? 0. Appealing to Lemma A.2 and the minimizing property again, we obtain kLmg� k2
2 6

c
cr;0

rd
0 þ kLmyk2

2.
Now the assumption ker H \ ker L = {0} implies that the sequence fmg� g is uniformly bounded. Therefore, there exists a sub-
sequence, also denoted as fmg� g, that converges to some �m 2 Rm. Note that
lim
r0!0
kHmg� � dyk2

2 6 lim
r0!0

2 kHmg� � dk2
2 þ kd� dyk2

2

h i
¼ 0 and lim

r0!0
kLmg� k2

2 6 kLmyk2
2

i.e., kH �m� dyk2
2 ¼ 0 and kL �mk2

2 6 kLmyk2
2. The uniqueness of the generalized minimum-norm solution m� implies �m ¼my.

Now a subsequence convergence argument concludes the theorem. h
A.2. Proof of Theorem 3.3

We shall need the following lemma.

Lemma A.3. The sequence {gk}k generated by Alg I is uniformly bounded.
Proof. By bias-variance decomposition, sk and kk can be explicitly written as
kk ¼
2a000

kLmk�1k2
2 þ tr ððsk�1HTHþ kk�1LTLÞ�1LTLÞ þ 2b0

;

sk ¼
2a001

kHmk�1 � dk2
2 þ trððsk�1HTHþ kk�1LTLÞ�1HTHÞ þ 2b1

:

Therefore, we have 0 6 kk 6
a000
b0

and 0 6 sk 6
a001
b1

, i.e., the sequences {kk}k and {sk}k are uniformly bounded. The minimizing
property of mk ¼mgk

yields
kHmk � dk2
2 þ gkkLmkk2

2 6 kH0� dk2
2 þ gkkL0k2

2 ¼ kdk
2
2; i:e:; kHmk � dk2

2 6 kdk
2
2:
By the definition of sk and the GSVD, we obtain
skþ1 ¼
2a001

kHmk � dk2
2 þ

Pp
i¼1

c2
i

skc2
i
þkk
þ n�m

sk
þ 2b1

P
2a001

kdk2
2 þ n

sk
þ 2b1

:

To derive a positive lower bound for the sequence {sk}k, we define an auxiliary sequence f~skgk by letting ~s0 ¼ s0, and for k = 0,
1, 2, . . .
~skþ1 ¼
2a001

kdk2
2 þ n

~sk
þ 2b1

:

We claim that sk P ~sk for all k. It holds for k = 0 automatically, and for k = 0,1, . . ., we have
skþ1 � ~skþ1 P
2a001

kdk2
2 þ n

sk
þ 2b1

� 2a001
kdk2

2 þ n
~sk
þ 2b1

¼ 2na001
sk~sk kdk2

2 þ n
sk
þ 2b1

	 

kdk2

2 þ n
~sk
þ 2b1

	 
 ðsk � ~skÞ:
The assertion now follows by induction on k. Next we show that the sequence f~skgk has a positive lower bound. Note that its
definition gives
~skþ1 � ~sk ¼
2na001

~sk�1~sk kdk2
2 þ n

~sk
þ 2b1

	 

kdk2

2 þ n
~sk�1
þ 2b1

	 
 ð~sk � ~sk�1Þ;
i.e., the sequence f~skgk is monotonic. Moreover, it is bounded below and above by 0 and a001
b1

, respectively. Therefore, the
sequence f~skgk converges monotonically. Upon convergence, the limit ~s� satisfies
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~s� ¼ 2a001
kdk2

2 þ n
~s� þ 2b1

; i:e:; ~s� ¼ 2a001 � n

kdk2
2 þ 2b1

¼ 2a1

kdk2
2 þ 2b1

> 0:
Therefore, the sequence f~skgk is positively away from zero, and this in conjunction with the claim implies that there exists
some positive constant cs such that sk P cs. Now the uniform boundedness of the regularization parameter gk follows
directly from its definition gk ¼ kks�1

k and the uniform boundedness of the sequences {kk}k and {sk}k. h

Proof of Theorem 3.3

Proof. By Lemma A.3 and its proof, the sequence {(gk,kk,sk)}k is uniformly bounded, and therefore, there exists a
subsequence, denoted by fðgkl

; kkl
; skl
Þgkl2K with the index set K � N, and some ðg�; k�; s�Þ 2 ðRþÞ3 such that
lim
kl!1

gkl
¼ g�; lim

kl!1
kkl
¼ k� and lim

kl!1
skl
¼ s�:
The convergence of the sequence fðkkl
; skl
Þgkl2K yields
lim
kl!1

skl
HTHþ kkl

LTL
	 
�1

¼ s�H THþ k�LTL
	 
�1

; i:e:; covqkl ðmÞ½m� ¼ covq�ðmÞ½m�:
Appealing to the continuity of the Tikhonov solution mg with respect to g, we derive from the convergence of the subse-
quence fgkl

gkl2K that limkl!1mkl
¼mg� :¼m�. Noting the fact that qkl ðmÞ is solely determined by mkl

and covqkl ðmÞ½m�, we
deduce limkl!1qkl ðmÞ ¼ q�ðmÞ. By the convergence of fmkl

gkl2K, we have
lim
kl!1
kHmkl

� dk2
2 ¼ kHm� � dk2

2 and lim
kl!1
kLmkl

k2
2 ¼ kLm�k2

2:
This in conjunction with the convergence of fcovqkl ðmÞ½m�gkl2K implies
lim
kl!1

2a000
kLmkl

k2
2 þ tr ðcovqkl ðmÞ½m�L

TLÞ þ 2b0

¼ 2a000
kLm�k2

2 þ trðcovq�ðmÞ½m�LTLÞ þ 2b0

:¼ k��;
lim
kl!1

2a001
kHmkl

� dk2
2 þ trðcovqkl ðmÞ½m�H

THÞ þ 2b1

¼ 2a001
kHm� � dk2

2 þ trðcovq�ðmÞ½m�HTHÞ þ 2b1

:¼ s��:
Combined with the definitions of qkl ðkÞ and qkl ðsÞ, these two identities imply
lim
kl!1

qkl ðkÞ ¼ q�ðkÞ and lim
kl!1

qkl ðsÞ ¼ q�ðsÞ
for some q*(k) and q*(s) uniquely determined by k** and s**, respectively. Therefore, the subsequence fqkl ðmÞqkl ðkÞqkl ðsÞgkl2K
converges to some q*(m,k,s) � q*(m)q*(k)q*(s). By the definitions of kklþ1 and sklþ1, we see that the subsequence
fðkklþ1; sklþ1Þgkl2K also converges, and by repeating the preceding argumentation, we deduce that the subsequence
fqklþ1ðmÞqklþ1ðkÞqklþ1ðsÞgkl2K converges to some q**(m,k,s) � q**(m)q**(k) q**(s).

Next we show that the limit q*(m,k,s) � q*(m)q*(k)q*(s) is a stationary point of the divergence DKL. To this end, let S be
the algorithmic map [37] defined by Alg I, i.e., the solution operator that maps qk(m,k,s) into qk+1(m,k,s). Then the
continuity of the functional DKL implies that the map S is closed. Therefore, we deduce that q��ðm; k; sÞ ¼ Sq�ðm; k; sÞ.
Obviously, it holds true that
DKLðq��ðmÞq��ðk; sÞjpðm; k; sÞÞ 6 DKLðq�ðmÞq��ðk; sÞjpðm; k; sÞÞ 6 DKLðq�ðmÞq�ðk; sÞjpðm; k; sÞÞ:
This and the monotone convergence of the functional value imply
DKLðq��ðmÞq��ðk; sÞjpðm; k; sÞÞ ¼ DKLðq�ðmÞq��ðk; sÞjpðm; k; sÞÞ ¼ DKLðq�ðmÞq�ðk; sÞjpðm; k; sÞÞ: ð22Þ
From the identity q��ðm; k; sÞ ¼ Sq�ðm; k; sÞ, i.e.,
DKLðq�ðmÞq��ðk; sÞjpÞ 6 DKLðq�ðmÞqðk; sÞjpÞ 8qðk; sÞ;
DKLðq��ðmÞq��ðk; sÞjpÞ 6 DKLðqðmÞq��ðk; sÞjpÞ 8qðmÞ:
Now the strict biconvexity of the functional DKL and (22) implies that q**(k,s) = q*(k,s) and q**(m) = q*(m), i.e.,
q**(m,k,s) = q*(m,k,s), and thus q*(m,k,s) is a stationary point. h
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